1. Giải phương trình: 2x4 - 3x2 - 5 = 0
2. Cho phương trình bậc 2 ẩn x: x2 - (m+5)x-m+6=0 (1) (m là tham số)
a. Giải pt (1) khi m = 1
b. Tìm m để pt (1) có 2 nghiệm x1, x2 thỏa mãn: x12x2 + x1x22 = 18
#help me, hứa sẽ vote.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}x>-2\\y>-2\end{matrix}\right.\)
Có : x3 + x + 2 = y3 - 3y2 + 4y
<=> x3 + x + 2 = (y3 - 3y2 + 3y - 1) + y + 1
<=> x3 + x + 2 = (y - 1)3 + y + 1
<=> x3 - (y - 1)3 + x - y + 1 = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2] + (x - y + 1) = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2 + 1] = 0
<=> x - y + 1 = 0 (Vì x2 + x(y - 1) + (y - 1)2 + 1 > 0 \(\forall x;y\) )
<=> y = x + 1
Thay y = x + 1
\(2\sqrt{x+2}=y+2\)
\(\Leftrightarrow2\sqrt{x+2}=x+3\)
\(\Leftrightarrow x-2\sqrt{x+2}+3=0\)
\(\Leftrightarrow(\sqrt{x+2}-1)^2=0\)
\(\Leftrightarrow\sqrt{x+2}=1\)
\(\Leftrightarrow x=-1\) (tm)
Khi đó y = 0
Vậy (x;y) = (-1;0)
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.