Cho biểu thức (tham số m)
\(A=x^2\left(m+5\right)-x\left(m+5\right)\left(x+\frac{3}{2}\right)+\left(x-m\right)\)
a) Rút gọn A
b) Khi m=-1,tìm x để A=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9) bài này nhiều cách thay lắm. chả biết cách nào nhanh hơn.
ĐK : ...
\(N=\frac{a+x+1}{a+x}:\frac{a^2+ax-a}{a+x}.\left[\frac{2ax-1+\left(a^2+x^2\right)}{2ax}\right]\)
\(N=\frac{a+x+1}{a+x}.\frac{a+x}{a\left(a+x-1\right)}.\frac{\left(a+x\right)^2-1}{2ax}\)
\(N=\frac{a+x+1}{a\left(a+x-1\right)}.\frac{\left(a+x-1\right)\left(a+x+1\right)}{2ax}\)
\(N=\frac{\left(a+x+1\right)^2}{2a^2x}=\frac{\left(a+1+\frac{1}{a-1}\right)^2}{\frac{2a^2}{a-1}}\)
\(N=\frac{\left(\frac{\left(a+1\right)\left(a-1\right)+1}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\left(\frac{a^2}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\frac{a^4}{\left(a-1\right)^2}}{\frac{2a^2}{a-1}}=\frac{a^2}{2\left(a-1\right)}\)
10) \(3a^2+3b^2=10ab\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=b\\a=3b\left(loai-vi-b>a>0\right)\end{cases}}\)
Thay 3a = b vào biểu thức, ta có :
\(P=\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)
Theo giả thiết: \(x+\frac{1}{x}=3\left(x\ne0\right)\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)
\(\Rightarrow x^2+\frac{1}{x^2}=7\)
\(\Rightarrow A=x^2+\frac{1}{x^2}-\frac{1}{2}=7-\frac{1}{2}=\frac{13}{2}\)
Vậy \(A=\frac{13}{2}\)
a) A = x2(m + 5) - x(m + 5)(x + 3/2) + (x - m)
A = mx2 + 5x2 - mx2 - 3/2mx - 5x2 - 15/2x + x - m
A = -3/2mx - m - 13/2x
b) Khi m = -1, ta có:
(-3/2).(-1).x - (-1) - 13/2x = 0
<=> 3/2x - 13/2x + 1 = 0
<=> 3/2x - 13/2x = 0 - 1
<=> 3/2x - 13/2x = -1
<=> 3x - 13x = -2
<=> -10x = -2
<=> x = -2/-10 = 1/5