Giải phương trình:
\(\frac{6x+5}{12x+9}+\frac{3x-7}{9-12x}=\frac{4x^2+10x-7}{16x^2-9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2(m + 5) - x(m + 5)(x + 3/2) + (x - m)
A = mx2 + 5x2 - mx2 - 3/2mx - 5x2 - 15/2x + x - m
A = -3/2mx - m - 13/2x
b) Khi m = -1, ta có:
(-3/2).(-1).x - (-1) - 13/2x = 0
<=> 3/2x - 13/2x + 1 = 0
<=> 3/2x - 13/2x = 0 - 1
<=> 3/2x - 13/2x = -1
<=> 3x - 13x = -2
<=> -10x = -2
<=> x = -2/-10 = 1/5
9) bài này nhiều cách thay lắm. chả biết cách nào nhanh hơn.
ĐK : ...
\(N=\frac{a+x+1}{a+x}:\frac{a^2+ax-a}{a+x}.\left[\frac{2ax-1+\left(a^2+x^2\right)}{2ax}\right]\)
\(N=\frac{a+x+1}{a+x}.\frac{a+x}{a\left(a+x-1\right)}.\frac{\left(a+x\right)^2-1}{2ax}\)
\(N=\frac{a+x+1}{a\left(a+x-1\right)}.\frac{\left(a+x-1\right)\left(a+x+1\right)}{2ax}\)
\(N=\frac{\left(a+x+1\right)^2}{2a^2x}=\frac{\left(a+1+\frac{1}{a-1}\right)^2}{\frac{2a^2}{a-1}}\)
\(N=\frac{\left(\frac{\left(a+1\right)\left(a-1\right)+1}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\left(\frac{a^2}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\frac{a^4}{\left(a-1\right)^2}}{\frac{2a^2}{a-1}}=\frac{a^2}{2\left(a-1\right)}\)
10) \(3a^2+3b^2=10ab\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=b\\a=3b\left(loai-vi-b>a>0\right)\end{cases}}\)
Thay 3a = b vào biểu thức, ta có :
\(P=\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)
Theo giả thiết: \(x+\frac{1}{x}=3\left(x\ne0\right)\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)
\(\Rightarrow x^2+\frac{1}{x^2}=7\)
\(\Rightarrow A=x^2+\frac{1}{x^2}-\frac{1}{2}=7-\frac{1}{2}=\frac{13}{2}\)
Vậy \(A=\frac{13}{2}\)
\(\Leftrightarrow\frac{6x+5}{12x+9}-\frac{3x-7}{12x-9}=\frac{4x^2+10x-7}{16x^2-9}.\)
\(\Leftrightarrow\frac{\left(6x+5\right)\left(12x-9\right)-\left(3x-7\right)\left(12x+9\right)}{\left(3.4.x\right)^2-\left(3.3\right)^2}=\frac{4x^2+10x-7}{16x^2-9}\)
\(\Leftrightarrow\frac{72x^2+6x-45-\left(36x^2-57x-63\right)}{3^2\left(16x^2-9\right)}=\frac{4x^2+10x-7}{16x^2-9}\)
ĐK: \(16x^2-9\ne0\Leftrightarrow x^2\ne\left(\frac{3}{4}\right)^2\Rightarrow x\ne\pm\frac{3}{4}\)
\(\Leftrightarrow72x^2+6x-45-36x^2+57x+63=36x^2+90x-63\)
\(\Leftrightarrow27x=81\Leftrightarrow x=3\)