Bài 1) cmr với mọi số nguyên dương n, số M=9*34n -8*24n +2019 chia hết cho 20
Bài 2) giải hpt: x2+y2+4x+2y=3
x2+7y2-4xy+6y=13
Bài 3) cho ba số thực dương a,b,c thỏa mãn abc=1. tìm GTNN của biểu thức
P=\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)
Bài 3
Với abc=1
Ta CM \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}=1\)
\(VT=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ac}\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\)(ĐPCM)
Ta có \(\left(1+a\right)^2+b^2+5=\left(a^2+b^2\right)+2a+6\ge2ab+2a+6\)
=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+4}\)
Mà \(\frac{1}{ab+a+4}=\frac{1}{ab+a+1+3}\le\frac{1}{4}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\)(do \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\))
=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)=\frac{11}{6}-\frac{1}{2}.\frac{1}{ab+a+1}\)
Khi đó
\(P\ge\frac{11}{2}-\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{11}{2}-\frac{1}{2}.1=5\)
\(MinP=5\)khi \(a=b=c=1\)