Giải pt sau
(x2 +4x+8)2 +3x(x2 +4x +8) +2x2 =0
mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Trích 4 chất trên thành 4 mẫu thử nhỏ, đánh số
+ Cho H2O lần lượt vào 4 mẫu thử, quan sát:
. . . . . Mẫu thử nào không có hiện tượng gì là SiO2SiO2. Ta nhận ra được SiO2SiO2.
. . . . . Ba mẫu thử còn lại tan ra là BaO, P2O5 và Na2O
BaO+H2O−−−>Ba(OH)2BaO+H2O−−−>Ba(OH)2
P2O5+3H2O−−−>2H3PO4P2O5+3H2O−−−>2H3PO4
Na2O+H2O−−−>2NaOHNa2O+H2O−−−>2NaOH
+ Cho quỳ tím lần lượt vào 3 dung dịch thu được ở trên, quan sát:
. . . . . Mẫu thử nào làm quỳ tím hóa đỏ là H3PO4H3PO4 , vậy chất ban đầu là P2O5P2O5. Ta nhận ra được P2O5P2O5.
. . . . . Hai mẫu thử còn lại làm quỳ tím hóa xanh là Ba(OH)2Ba(OH)2 và NaOHNaOH=> Chất ban đầu là BaOBaO và Na2ONa2O.
+ Cho axit sunfuric H2SO4H2SO4 lần lượt vào hai mẫu thử còn lại:
. . . . . Mẫu thử nào thấy xuất hiện kết tủa trắng và tỏa nhiều nhiệt là BaSO4BaSO4 => Chất ban đầu là BaOBaO. Ta nhận ra được BaOBaO
BaO+H2SO4−−−>BaSO4+H2OBaO+H2SO4−−−>BaSO4+H2O
. . . . . Mẫu thử còn lại là Na2ONa2O
Vậy ta đã nhận ra được các chất trên
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow P< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P< 1-\frac{1}{100}\)
\(\Rightarrow P< \frac{99}{100}< 1\)
\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}\)
\(P=1-\frac{1}{100}< 1\)
Vậy : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)
e sẽ cố gắng !!!
\(3x-15=2x\left(x-5\right)\)
\(3x-15=2x^2-10x\)
\(3x-15-2x^2+10x=0\)
\(13x-15-2x^2=0\)
\(x\left(13-2x\right)-15=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(f,x\left(2x-7\right)-4x+14=0\)
\(2x^2-7x-4x+14=0\)
\(2x^2-11x+14=0\)
\(x\left(2x-11\right)=-14\)
\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)
(x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = a
<=> a2 + 3xa + 2x2 = 0
<=> a2 + 2ax + ax + 2x2 = 0
<=> (a + x)(a + 2x) = 0
<=> (x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
<=> (x2 + 5x + 8)(x2 + 6x + 8) = 0
<=> x2 + 4x + 2x + 8 = 0 (vì x2 + 5x + 8 = (x2 + 5x + 6,25) + 1,75 = (x + 2,5)^2 + 1,75 > 0)
<=> (x + 4)(x + 2) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=-2\end{cases}}\)
Vậy S = {-4; -2}