K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2023

ĐKXĐ : a;b;c  \(\ne0\)

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)

\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)

\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)

Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh

30 tháng 1 2023

b) ĐKXĐ : \(x\ne\pm1\)

\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)

30 tháng 1 2023

a) ĐKXĐ : \(x\ge0;x\ne16\)

\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)

 

\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right).\left(\sqrt{x}+\sqrt{3}\right)}.\left(2\sqrt{x}+\sqrt{12}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}.2\left(\sqrt{x}+\sqrt{3}\right)\)

\(=2.\left(\sqrt{x}-\sqrt{3}\right)\)

 

30 tháng 1 2023

Với `x ne 3;x >= 0` có:

`[(\sqrt{x}-3)^2]/[(\sqrt{x}-3)(\sqrt{x}+3)].(2\sqrt{x}+2\sqrt{3})`

`=[\sqrt{x}-3]/[\sqrt{x}+3].2(\sqrt{x}+3)`

`=2(\sqrt{x}-3)`

`=2\sqrt{3}-6`

30 tháng 1 2023

Ta có:

`VT=[\sqrt{5}(\sqrt{5}+3)]/\sqrt{5}+[\sqrt{3}(\sqrt{3}+1)]/[\sqrt{3}+1]-\sqrt{5}-3`

    `=\sqrt{5}+3+\sqrt{3}-\sqrt{5}-3`

    `=\sqrt{3}=VP`

`=>Đpcm`

30 tháng 1 2023

Gọi x,y lần lượt là vận tốc và thời gian xe chạy

Ta có hệ phương trình:
 x.y = 180
x + (x+10)(y-1,45) = xy <=> 10y - 0,45x = 14,5 <=> 1800/x- 0,45x = 14,5
vậy x = 50 và y = 3 Đúng thì tick mình nhé.
30 tháng 1 2023

Gọi vận tốc hai xe lần lượt là \(a,b\left(b>a\right)\)(km/h)

Vì xe thứ hai đi được \(\dfrac{2}{3}\) đoạn đường mới gặp xe thứ nhất nên xe thứ nhật đi được \(\dfrac{1}{3}\) đoạn đường mới gặp xe thứ hai hay vận tốc xe thứ hai với xe thứ nhất lần lượt là \(2:1\)

Ta có:

\(b-a=10\) và \(\dfrac{b}{a}=\dfrac{2}{1}\)

Từ \(\dfrac{b}{a}=\dfrac{2}{1}\) suy ra \(\dfrac{b}{2}=\dfrac{a}{1}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{b}{2}=\dfrac{a}{1}=\dfrac{b-a}{2-1}=\dfrac{10}{1}=10\)

Suy ra:

\(b=10\cdot2=20\)

\(a=10\cdot1=10\)

Vậy vận tốc xe thứ nhất sẽ là 10 km/h và vận tốc xe thứ hai là 20 km/h.

30 tháng 1 2023

Vì vòi 1 chảy 4h vòi 2 chảy 6h thì được \(\dfrac{2}{5}\) bể nên vòi 1 chảy \(4:\dfrac{2}{5}=10h\) vòi 2 chảy \(6:\dfrac{2}{5}=15\left(h\right)\) thì đầy bể.

Vòi 1 và vòi 2 chảy có tỉ lệ lần lượt là \(10:15\) hay \(2:3\)

Gọi thời gian mỗi vòi chảy đầy bể lần lượt là \(a,b\left(giờ\right)\)

Theo bài toán, ta có:

\(2a=3b\) hay \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{a+b}{\dfrac{1}{2}+\dfrac{1}{3}}=\dfrac{12}{\dfrac{5}{6}}=14,4\)

Từ đây suy ra:

\(a=\dfrac{1}{2}\cdot14,4=7,2\)

\(b=\dfrac{1}{3}\cdot14,4=4,8\)

Vậy vòi thứ nhất mất 7,2 giờ để đầy bể, vòi thứ hai mất 4,8 giờ để đầy bể.

29 tháng 1 2023

Mình bổ sung một cách làm khác nhé.

Áp dụng BĐT Cô-si cho 3 số dương \(a,b,c\), ta có \(a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow1\ge3\sqrt[3]{abc}\)      (1)

Áp dụng BĐT Cô-si cho 3 số dương \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\) ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)           (2)

Nhân theo vế của các BĐT (1) và (2), ta được \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\) (đpcm)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

29 tháng 1 2023

\(Ta\) có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\)

\(=1+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}+1+\dfrac{a}{c}+\dfrac{b}{c}+1\)

\(=\left(1+1+1\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)

\(Ta\) có : \(\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2\Leftrightarrow\dfrac{a^2+b^2}{ab}-2\ge0\Leftrightarrow\dfrac{a^2-2ab+b^2}{ab}\ge0\)

\(cmt\) \(tương\) \(tự\) \(với\) : \(\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\) \(và\) \(\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\) \(đều\) \(\ge2\) \(như\) \(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2\)

\(\Rightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}\ge9\) \(hay\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

5 tháng 2 2023

28 tháng 1 2023

\(B=\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹ+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)

\(B=\dfrac{yz\left(x+2xy+1\right)}{yz\left(x+xy+xz+1\right)}+\dfrac{xz\left(y+2yz+1\right)}{xz\left(y+yz+ỹ+1\right)}+\dfrac{xy\left(z+2zx+1\right)}{xy\left(z+zx+zy+1\right)}\)

\(B=\dfrac{\left(1+y\right)+y\left(1+z\right)}{\left(1+y\right)\left(1+z\right)}+\dfrac{\left(1+z\right)+z\left(1+x\right)}{\left(1+z\right)\left(1+x\right)}+\dfrac{\left(1+x\right)+x\left(1+y\right)}{\left(1+x\right)\left(1+y\right)}\)

\(B=\dfrac{y}{1+y}+\dfrac{1}{1+z}+\dfrac{1}{1+x}+\dfrac{z}{1+z}+\dfrac{1}{1+y}+\dfrac{x}{1+x}\)

\(B=\left(\dfrac{y}{1+y}+\dfrac{1}{1+y}\right)+\left(\dfrac{1}{1+z}+\dfrac{z}{1+z}\right)+\left(\dfrac{x}{1+x}+\dfrac{1}{1+x}\right)\)

\(B=1+1+1\)

\(B=3\)