Cmr với mọi số nguyên tố p thì \(p^3+\frac{p-1}{2}\)không phải là tích của 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{\frac{a}{b^2}}=\sqrt[3]{\frac{ab}{b^3}}=\frac{\sqrt[3]{ab}}{\sqrt[3]{b^3}}=\frac{\sqrt[3]{ab}}{b}\)
\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a^2b}{b^2a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a}{b}}\)
\(=2\sqrt{\frac{a}{b}}+\sqrt{ab}\)
a) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)
\(=\frac{a^2-\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}\)
b) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}=2\)
\(\Leftrightarrow a^2+\sqrt{a}.\left(a-\sqrt{a}+1\right)-2\sqrt{a}.\left(a-\sqrt{a}+1\right)=2\left(a-\sqrt{a}+1\right)\)
\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=2a-2\sqrt{a}+2\)
\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2\)
\(\Leftrightarrow-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2-a^2\)
\(\Leftrightarrow-2\sqrt{a}.a-\sqrt{a}=-2\sqrt{a}+2-a^2\)
\(\Leftrightarrow-2a\sqrt{a}+\sqrt{a}=2-a^2\)
\(\Leftrightarrow\sqrt{a}.\left(2a+1\right)=2-a^2\)
\(\Leftrightarrow\left[\sqrt{a}.\left(2a+1\right)\right]^2=\left(2-a^2\right)^2\)
\(\Leftrightarrow4a^3-4a^2+a=4-4a^2+a^4\)
\(\Leftrightarrow\orbr{\begin{cases}a=4\left(\text{thỏa mãn}\right)\\a=1\left(\text{loại}\right)\end{cases}}\)
=> a = 4
Cách ngắn hơn :
\(đkxđ\Leftrightarrow x\ge0\)
\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)\(-2\sqrt{a}-1+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
\(b,A=2\Rightarrow a-\sqrt{a}=2\)
\(\Rightarrow a-\sqrt{a}-2=0\)
\(\Rightarrow a+\sqrt{a}-2\sqrt{a}-2=0\)
\(\Rightarrow\sqrt{a}\left(\sqrt{a}+1\right)-2\left(\sqrt{a}+1\right)=0\)
\(\Rightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=2\\\sqrt{a}=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=4\\a\in\varnothing\end{cases}}}\)
\(\Rightarrow a=4\)
\(c,A=a-\sqrt{a}=\sqrt{a}^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Rightarrow A_{min}=-\frac{1}{4}\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)
Vậy với \(a=\frac{1}{4}\)thì A có giá trị nhỏ nhất là \(-\frac{1}{4}\)
mình đánh nhầm, đề là cho a,b,c là các số thực dương tổng bằng 1
\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a-\sqrt{a}\right)\left(a\sqrt{a}+1\right)}{\left(a-\sqrt{a}\right)\left(a+\sqrt{a}\right)}\)
\(=\frac{a^2\cdot\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}+a-a^2-\sqrt{a}\right)}{a^2-a}\)
\(=\frac{2a^2-2a}{a^2-a}\)
\(=2\)( 1 )
\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
\(=\left(\frac{\sqrt{a}}{1}-\frac{1}{\sqrt{a}}\right)\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\left(\frac{a-1}{\sqrt{a}}\right)\left(\frac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\right)\)
\(=\frac{a-1}{\sqrt{a}}\cdot\frac{2\left(a+1\right)}{a-1}\)
\(=\frac{2\left(a+1\right)}{\sqrt{a}}\) ( 2 )
Cộng ( 1 ) và ( 2 ) lại thì ta được biểu thức ban đầu:
\(2+\frac{2\left(a+1\right)}{\sqrt{a}}\)
Câu b,c em chịu:((
P/S:e ko bt đúng hay sai đâu ạ
Mk giải nốt phần còn lại nha
sai thì thông cảm
\(2+\frac{2\left(a+1\right)}{\sqrt{a}}=7\Leftrightarrow2a+2=5\sqrt{a}\)
\(\Leftrightarrow2a-5\sqrt{a}+2=0\)
\(\Leftrightarrow\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{4}\\a=4\end{cases}}\)
\(2+\frac{2\left(a+1\right)}{\sqrt{a}}>6\)\(\Rightarrow2a+2>4\sqrt{a}\Rightarrow2\left(a+1-2\sqrt{a}\right)>0\)
\(\Leftrightarrow\left(a+1-2\sqrt{a}\right)>0\Leftrightarrow\left(\sqrt{a}-1\right)^2>0\)
\(\Leftrightarrow a\ne1;a\ge0\)
Khử mẫu biểu thức chứa căn ms đúng
\(\sqrt{\frac{\left(1+\sqrt{2}\right)^3}{27}}=\sqrt{\frac{\left(1+\sqrt{2}\right)^2\cdot\left(1+\sqrt{2}\right)}{3^2\cdot3}}=\frac{1+\sqrt{2}}{3}\cdot\sqrt{\frac{1+\sqrt{2}}{3}}\)
\(=\frac{1+\sqrt{2}}{3}\cdot\frac{\sqrt{3\cdot\left(1+\sqrt{2}\right)}}{3}=\frac{1+\sqrt{2}}{9}\cdot\sqrt{3+3\sqrt{2}}\)
#)Giải :
Giả sử \(p^3+\frac{p-1}{2}\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow p^3+\frac{p-1}{2}=a\left(a+1\right)\Rightarrow2p\left(2p^2+1\right)=\left(2a+1\right)^2+1\)
Nếu \(p=3\Rightarrow p^3+\frac{p-1}{2}=3^3+\frac{3-1}{2}=27+1=28\left(ktm\right)\)
Nếu \(p\ne3\Rightarrow2p^2+1⋮3\Rightarrow\left(2a+1\right)^2+1⋮3\Rightarrow\left(2a+1\right)^2\div3\) dư 2 (mâu thuẫn)
\(\Rightarrowđpcm\)
cái cuối là chia 3 dư 1 chớ sao dư 2 vậy bạn