\(x^2+2x+\frac{5}{2}=\frac{1}{2}\sqrt{\frac{1}{2}x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi AD là đường kính của ( O ; R )
Có: \(\Delta ADC\) nội tiếp đường tròn ( O ; R ) có O là trung điểm của AD \(\Rightarrow\)\(\Delta ADC\) vuông tại C
Xét 2 tam giác vuông ABH và ADC có: ^ABH = ^ADC ( cùng chắn cung AC ) \(\Rightarrow\)\(\Delta ABH~\Delta ADC\) ( g - g )
\(\Rightarrow\)\(\frac{AB}{AD}=\frac{AH}{AC}\) hay \(\frac{c}{2R}=\frac{h}{b}\)\(\Leftrightarrow\)\(bc=2Rh\)
b) từ a ta có: \(bc=2Rh\)\(\Leftrightarrow\)\(\frac{abc}{4R}=\frac{2Rhc}{4R}=\frac{1}{2}hc=S_{ABC}\) ( đpcm )
a3 + b3 + c3 = a2 + b2 + c2 = 1
\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) = 0 ( 1 )
Mà a2 + b2 + c2 = 1 \(\Rightarrow\)| a | \(\le\)1, | b | \(\le\)1 , | c | \(\le\)1
\(\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)\ge0\\b^2\left(1-b\right)\ge0\\c^2\left(1-c\right)\ge0\end{cases}}\)
\(\Rightarrow\)a2 ( 1 - a ) + b2 ( 1 - b ) + c2 ( 1 - c ) \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}a^2\left(1-a\right)=0\\b^2\left(1-b\right)=0\\c^2\left(1-c\right)=0\end{cases}}\)
( a,b,c ) là hoán vị của ( 0 ; 0 ; 1 )
Vậy S = 1
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow x=\sqrt{3}-1\)
\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)
\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)
\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_4\)
Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)
\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(KL:x\in\left\{0;4\right\}\)
cộng 0,5.x-1 và 1/16 vào cả 2 vế nó sẽ ra 2 cái bình phương bằng nhau.đoạn sau tự giải ko giải được thì ở nhà khỏi đi học.chúc em học tốt.
\(x^2+2x+\frac{5}{2}=\frac{1}{2}\sqrt{\frac{1}{2}x-1}\)
\(\Leftrightarrow x^2+\frac{2.5}{4}x+\frac{25}{16}=\frac{x}{2}-1+\frac{2}{4}\sqrt{\frac{x}{2}-1}+\frac{1}{16}\)
\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\left(\sqrt{\frac{x}{2}-1}+\frac{1}{4}\right)^2\)
Làm nốt