giải các phương trinh sau :
a) 3(2x - 1 ) - 2 (1 - x ) = x + 9
b) -3 ( 2x - 1 ) - 2 (1 - x ) = x + 9 ( 1 - x )
c) ( 1 - x ) ( 2x - 1 ) - 2 (2 - x ) ( 2 + x ) = x = 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-x-6}{x-3}=\frac{x^2-3x+2x-6}{x-3}=\frac{x\left(x-3\right)+2\left(x-3\right)}{\left(x-3\right)}=x+2=0\Leftrightarrow x=-2\)
\(\frac{x^2+2x-\left(3x+6\right)}{x+2}=\frac{x\left(x+2\right)-3\left(x+2\right)}{x+2}=x-3=0\Leftrightarrow x=3\)
\(\frac{4}{x-2}-\left(x-2\right)=0\Leftrightarrow\frac{4}{a}-a=0\left(a=x-2\right)\Leftrightarrow\frac{4}{a}=a\Leftrightarrow a^2=4\Leftrightarrow a=\pm2\Leftrightarrow x=4\text{ hoặc 0}\)
a) ĐKXĐ: x \(\ne\)3
Ta có: \(\frac{x^2-x-6}{x-3}=0\)
<=> x2 - x - 6 = 0
<=> x2 - 3x + 2x - 6 = 0
<=> (x + 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=3\left(vn\right)\end{cases}}\)
Vậy S = {-2}
b) ĐKXĐ: x \(\ne\)-2
Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x+2}=0\)
<=> \(x\left(x+2\right)-3\left(x+2\right)=0\)
<=> \(\left(x-3\right)\left(x+2\right)=0\)
<=> \(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=-2\left(vn\right)\end{cases}}\)
Vậy S = {3}
c) ĐKXĐ: x \(\ne\)2
Ta có: \(\frac{4}{x-2}-x+2=0\)
<=> \(\frac{4-\left(x-2\right)^2}{x-2}=0\)
<=> \(\left(2-x+2\right)\left(2+x-2\right)=0\)
<=> \(x\left(4-x\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\4-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy S = {0; 4}
1,2−(x−1,4)=−6(x+0,9)
<=> 1,2 - x + 1,4 = -6x -6.0,9
<=> 2,6 - x = -6x - 5,4
<=> 6x - x + 2,6 + 5,4 =0
<=> 5x + 8 = 0
a) Với a = 5 thì b = 8
b) Nghiệm của phương trình là -8/5
\(\left(x^2-1+x\right)\left(x2-1+3x\right)-x\)
\(\Leftrightarrow\left(x^2-1+x\right)\times\left(5x-1\right)-x\)
\(\Leftrightarrow5x^3-x^2-5x+1+5x^2-x-x\)
\(\Leftrightarrow5x^3+4x^2-7x+1\)
Mình đã rút gọn ngắn nhất có thể rồi đấy!
a)A=\(x^2-6x+2=x^2-2.3x+9-7\)\(=\left(x-3\right)^2-7\ge-7\)với mọi x\(\inℝ\)
Dấu bằng xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy minA = - 7 tại x = 3
b)\(B=4x^2-x+2=4x^2-2.2x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+2\)
\(=\left(2x-\frac{1}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)với mọi x\(\inℝ\)
Dấu bằng xảy ra \(\Leftrightarrow2x-\frac{1}{4}=0\Leftrightarrow x=\frac{1}{8}\)
Vậy minB = \(\frac{31}{16}\)tại \(x=\frac{1}{8}\)
a) \(3\left(2x-1\right)-2\left(1-x\right)=x+9\)
\(\Leftrightarrow6x-3-2+2x=x+9\)
\(\Leftrightarrow6x+2x-x=9+2+3\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
b) \(-3\left(2x-1\right)-2\left(1-x\right)=x+9\left(1-x\right)\)
\(\Leftrightarrow-6x+3-2+2x=x+9-9x\)
\(\Leftrightarrow-6x+2x+9x-x=9+2-3\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
c) \(\left(1-x\right)\left(2x-1\right)-2\left(2-x\right)\left(2+x\right)=x+9\)
\(\Leftrightarrow2x-1-2x^2+x-8+2x^2=x+9\)
\(\Leftrightarrow-2x^2+2x^2+2x+x-x=9+8+1\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)