\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}}\)
Tìm m thuộc Z để nghiệm (x;y) của hệ phương trình là các số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả 3 bài này đều sử dụng định lí Pascal
B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)
NC cắt BM tại H; NI cắt AB tại P ; MI cắt AC tại Q
=> P; H ; Q thẳng hàng
B2: Xét các điểm ADCIBE cùng thuộc đường tròn (O)
B3: Tương tự.
\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow\frac{x^3+x^2+x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow x^3+x^2+x=\left(3-x\right)\left(x+1\right)\sqrt{x+1}\sqrt{2-x}\)
\(M=\)như trên
\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)
\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)
Áp dụng BĐT Cô- si cho 2 số không âm, ta có:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)
\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)
=>minM=2011 khi x=\(\frac{1}{2}\)
\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+2\right)x+2y=5\left(1\right)\\2mx-2y=2\left(2\right)\end{cases}}}\)
Lấy (1) +(2) có:
\(\left(m+2\right)x+2mx=7\)
\(\Leftrightarrow\left(m+2+2m\right)x=7\)
\(\Leftrightarrow\left(3m+2\right)x=7\)
\(\Leftrightarrow x=\frac{7}{3m+2}\)
Để hệ có nghiệm nguyên duy nhất thì 3m+2 \(\ne\)0 <=> m\(\ne\frac{-2}{3}\)
\(m\inℤ\Rightarrow3m+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
ta có bảng
Vì m\(\in\)Z => m=-1; m=-3