K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

số tiền bạn bạn nam phải trả chiếm số phần trăm giá thật là:

\(100\%-20\%=80\%\)

nếu ko đc giảm giá bạn nam phải trả số tiền là:

\(700000:80\%=875000\left(đ\right)\)

11 tháng 3 2022

2  ,/lo26\ơ

11 tháng 3 2022

háivhsxu ấy

số dân xã A năm 2020 là:

6540+(6540.10%)=7194 ( người)

số dân xã B năm 2020 là:

7470+(7470.8%)=8067,6=8068 ( người)

tổng số dân 2 xã là:

7194+8068=15262 ( người)

Ta có : (-36) : 9 = -4

            (-32) : 8 = -3

mà -4 < -3

=> (-36) : 9  <  (-32) : 8

NM
11 tháng 3 2022

1 .Độ dài đoạn thẳng IN là : \(IN=MN-MI=7-3.5=3.5cm\)

2. Điểm I là trung điểm của MN vì : 

\(MI=NI=\frac{MN}{2}\)

11 tháng 3 2022

Chứng minh\(\frac{7n+5}{3n+2}\)là phân số tối giản thì ta chứng minh \(ƯCLN\left(7n+5,3n+2\right)=1\)

Thật vậy, đặt \(ƯCLN\left(7n+5,3n+2\right)=d\left(d\inℕ^∗\right)\)

Khi đó \(\hept{\begin{cases}7n+5⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(7n+5\right)⋮d\\7\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}21n+15⋮d\\21n+14⋮d\end{cases}}\)

\(\Rightarrow\left(21n+15\right)-\left(21n+14\right)⋮d\)\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)

Vậy \(ƯCLN\left(7n+5,3n+2\right)=1\), do đó phân số \(\frac{7n+5}{3n+2}\)tối giản.

gọi \(ƯCLN\left(7n+5;3n+2\right)\) là d

\(\Rightarrow\hept{\begin{cases}7n+5⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}21n+15⋮d\\21n+14⋮d\end{cases}}}\)

\(\Rightarrow21n+15-\left(21n+14\right)=1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\frac{7n+5}{3n+2}\) là 1 p/s tối giản

\(\frac{1}{9}.A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2020.2021}+\frac{1}{2021.2022}\)

\(\frac{1}{9}A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2021-2020}{2020.2021}+\frac{2022-2021}{2021.2022}\)

\(\frac{1}{9}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2020}-\frac{1}{2021}+\frac{1}{2021}-\frac{1}{2022}\)

\(\frac{1}{9}A=1-\frac{1}{2022}\)

\(A=9-\frac{9}{2022}\)

NM
11 tháng 3 2022

ta có :

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2021}-\frac{1}{2022}\right)\)

\(=9\left(1-\frac{1}{2022}\right)=9\times\frac{2021}{2022}=\frac{6063}{674}\)

NM
11 tháng 3 2022

rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)

nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)

mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.

vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.

Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2

với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)

Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)

Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)

vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)

11 tháng 3 2022

Xét \(4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+\dfrac{4}{4^3}+...+\dfrac{2014}{4^{2013}}\)

=> \(3S=4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2014}{4^{2013}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+...+\dfrac{2014}{4^{2014}}\right)\)

=> \(3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}-\dfrac{2014}{4^{2014}}< 1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)

Đặt \(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)

=> \(4A=4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\)

=> \(3A=4A-A=\left(4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\right)\)

=> \(3A=4-\dfrac{1}{4^{2013}}< 4\)

=> \(A< \dfrac{4}{3}\)

=> \(3S< \dfrac{4}{3}\)

=> \(S< \dfrac{4}{9}< \dfrac{1}{2}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}\)

\(4S-S=3S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+......+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

đặt \(A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2023}}\)

\(4A-A=4+1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{2022}}-\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2023}}\right)\)

\(3A=4-\frac{1}{4^{2023}}\)

\(A=\frac{4}{3}-\frac{1}{3.4^{2023}}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{3.4^{2023}}-\frac{2014}{4^{2024}}\)

\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}\)

do \(\frac{4}{9}< \frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}< \frac{4}{8}=\frac{1}{2}\left(đpcm\right)\)