giải hệ phương trình sau
\(\hept{\begin{cases}x-y=20\\\frac{60}{x}-\frac{60}{y}=\frac{1}{2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ ptt 2
=>x=4-my
thay vào pt 1 ta đc:
m(4-my)+4y=10-m
=>4m-m^2y+4y=10-m
=> m^2y-4y+10-5m=0
no duy nhất x,y nên pt trên cs 1 no
=> đenta phẩy =0
=> 4-y(-5m)=0
5+5ym=0
=>ym=0
=>y=0
vậy đpcm
ak nhầm,
m^2y-4y+10-5m=0
=> denta =25-4y(-4y+10)=0
=>25+16y^2-40y=0
=>16y^2-40y+ 25=0
y=1.25
=> đpcm
vô lý
a) Vì AB là tiếp tuyến (O)
=> AB⊥OB
=> ABOˆABO^=900=900
Vì AC là tiếp tuyến (O)
=> AC⊥OC
=>ACOˆACO^ =900=900
Ta có: ABOˆ+ACOˆABO^+ACO^ =900+900=1800=900+900=1800
=> Tứ giác ABOC nội tiếp đường tròn. (theo dấu hiệu nhận biết tứ giác nội tiếp)
b) Vì tiếp tuyến AB cắt tiếp tuyến AC tại A
⇒{AB=ACBO=CO⇒{AB=ACBO=CO
⇒⇒ AO là đường trung trực ứng BC
⇒⇒ AO⊥BC ( mà E∈BC)
⇒⇒ BE⊥AO (đpcm)
Xét ΔABO có: ABOˆABO^ =900=900 (cmtrn)
BE⊥AO (cmtrn)
⇒⇒ Áp dụng hệ thức lượng trong tam giác vuông.
⇒⇒ AO⋅OE=OB2AO⋅OE=OB2 (mà OB=R)
⇒OA⋅OE=R2⇒OA⋅OE=R2 (đpcm)
c) Vì tiếp tuyến BP cắt tiếp tuyến PK tại P
⇒PB=PK⇒PB=PK
Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q
⇒KQ=QC⇒KQ=QC
Ta có: PAPQ=AP+PQ+AQPAPQ=AP+PQ+AQ =AP+PK+KQ+AQ=AP+PK+KQ+AQ
⇔PAPQ=(AP+PB)+(QC+AQ)⇔PAPQ=(AP+PB)+(QC+AQ)
⇔PAPQ=AB+AC⇔PAPQ=AB+AC
Vì AB+ACAB+AC không thay đổi khi K chuyển động trên cung nhỏ BC
⇒⇒ Chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC (đpcm).
d) Tự CM: ΔMOP∼ΔNQOΔMOP∼ΔNQO
⇒MPNO=MONQ⇒MPNO=MONQ ⇔MP⋅NQ=MO⋅NO=MN2⋅MN2⇔MP⋅NQ=MO⋅NO=MN2⋅MN2
⇔MP⋅NQ=MN24⇔MP⋅NQ=MN24
⇔MN2=4⋅(MP⋅NQ)⇔MN2=4⋅(MP⋅NQ)
⇔MN=2⋅MN⋅NQ−−−−−−−−√⇔MN=2⋅MN⋅NQ
Áp dụng bđt Côshi ta có:
2⋅MP⋅NQ−−−−−−−−√≤MP+NQ2⋅MP⋅NQ≤MP+NQ
⇔MN≤MP+NQ⇔MN≤MP+NQ (đpcm).
\(\Leftrightarrow\hept{\begin{cases}x-y=20\\\frac{y-x}{xy}=\frac{1}{120}\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=20\\xy=-2400\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=x-20\\x\left(x-20\right)+2400=0\end{cases}}\)
Đến đây dễ rồi nhé