K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H M N

Vì M là trung điểm của AB => HM là trung tuyến 

Mà \(\Delta ABH\)vuông tại H 

=> \(HM=\frac{1}{2}AB\)( trong tam giác vuông trung tuyến ứng với cạnh huyền = 1 phần 2 cạnh huyền )

=> AB = 30 cm

Chứng minh tương tự 

=> AC= 40 cm

Xét \(\Delta ABC\)có ( A = 900 )

=> \(BC=\sqrt{AC^2+AB^2}=50\)cm

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Rightarrow\frac{1}{AH}=\sqrt{\frac{1}{AB^2}+\frac{1}{AC^2}}=\frac{1}{24}\)

\(\Rightarrow AH=24cm\)

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(AB^2=BH.BC\)

\(\Rightarrow BH=AB^2:BC=18cm\)

Vì BH + HC = BC 

\(\Rightarrow HC=50-18=32cm\)

Study well 

10 tháng 8 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne49\end{cases}}\)

\(B=\left(\frac{\sqrt{x}}{x-49}-\frac{\sqrt{x}-7}{x+7\sqrt{x}}\right):\)\(\frac{2\sqrt{x}-7}{x+7\sqrt{x}}+\frac{\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}-\frac{\left(\sqrt{x}-7\right)^2}{\sqrt{x}\left(\sqrt{x}+7\right)\left(\sqrt{x}-7\right)}\right)\)\(:\frac{2\sqrt{x}-7}{\sqrt{x}\left(\sqrt{x}+7\right)}-\frac{\sqrt{x}}{\sqrt{x}-7}\)

\(\frac{x-x+14\sqrt{x}-49}{\sqrt{x}\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}-7}{\sqrt{x}\left(\sqrt{x}+7\right)}\)\(-\frac{\sqrt{x}}{\sqrt{x}-7}\)

\(=\frac{7\left(2\sqrt{x}-7\right)\sqrt{x}\left(\sqrt{x}+7\right)}{\sqrt{x}\left(\sqrt{x}+7\right)\left(\sqrt{x}-7\right)\left(2\sqrt{x}-7\right)}\)\(-\frac{\sqrt{x}}{\sqrt{x}-7}\)

\(=\frac{7}{\sqrt{x}-7}-\frac{\sqrt{x}}{\sqrt{x}-7}=\frac{7-\sqrt{x}}{\sqrt{x}-7}=-1\)

10 tháng 8 2019

\(x^4+y+4=y^2-x^2\Rightarrow4x^4+4y+16=4y^2-4x^2\Rightarrow4x^4+4x^2+1+16=4y^2-4y+1\\ \)

\(\Rightarrow\left(2x^2+1\right)^2+16=\left(2y-1\right)^2\Rightarrow\left(2y-1\right)^2-\left(2x^2+1\right)^2=16\Rightarrow\left(2y-2x^2-2\right)\left(2y+2x^2\right)=16\)\(\Rightarrow\left(y-x^2-1\right)\left(y+x^2\right)=4\)

Do \(\left(y-x^2-1\right)+\left(y+x^2\right)=2y-1\)không chia hết cho 2 => y-x2-1 và y+x2 không cùng tính chẵn lẻ

TH1: y-x2-1 =1 và y+x2=4   => y=3 và x = 1 hoặc -1

Th2: y-x2-1 =-1 và y+x2=-4 => y= -2 và x2 < 0 => loại

Vậy x=1 hoặc -1 và y=3

10 tháng 8 2019

\(\Delta ABH\approx\Delta CAH\)\(\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36\)

mà \(BH.CH=AH^2\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25\)

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

10 tháng 8 2019

đặt n2 + n + 43 = a2

4n2 + 4n + 172 = 4a2

( 2n + 1 )2 + 171 = 4a2

( 2n + 1 )2 - 4a2 = - 171

( 2n + 1 - 2a ) ( 2n + 1 + 2a ) = -171

tới đây lập bảng mà làm

21 tháng 8 2022

làm cả chứ làm thế ai cũng làm đc

đm mi

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

10 tháng 8 2019

bạn phải ns rõ là bài này có được dùng máy tính hay ko .

mình làm theo cách ko bấm máy nhé

 Ta có : khi góc \(\alpha\)tăng từ 0 -> 90 độ thì : \(\hept{\begin{cases}\sin\alpha\\\tan\alpha\end{cases}}\)tăng ; \(\hept{\begin{cases}\cos\alpha\\\cot\alpha\end{cases}}\)tăng

a) \(\sin15^o=\cos75^o>\cos80^o\)   ;\(\tan25^o=\cot65^o>\cot75^o\)

\(\cot75^o=\tan15^o=\frac{\sin15^o}{\cos15^o}>\sin15^o\)( vì \(0< \cos15^o< 1\) )

tóm lại : \(\cos80^o< \sin15^o< \cot75^o< \tan25^o\)

b) tương tự