Giải PT
\(\sqrt{-4x^2+25}=x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{-6}{1+x}}=5\)
\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)
\(\Leftrightarrow\frac{-6}{1+x}=25\)
\(\Leftrightarrow x+1=\frac{-6}{25}\)
\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)
\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow a^2+b^2+c^2-2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2=2^2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(\frac{a+b+c}{2}\right)^2=ab+bc+ac\)
Suy ra ab+bc+ca là số chính phương
a) Hai đường thẳng y=(3m + 2)x +m-1 và y=(3-m)x-m+2 cắt nhau \(\Leftrightarrow3m+2\ne3-m\)
\(\Leftrightarrow4m\ne1\Leftrightarrow m\ne\frac{1}{4}\)
b) Hai đường thẳng y=(3m + 2)x +m-1 và y=(3-m)x-m+2 song song với nhau \(\Leftrightarrow3m+2=3-m\)
\(\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)
P/s: E ms lớp 6, sai thông cảm
\(Q=\frac{2x+2\sqrt{x}+2}{-\sqrt{x}}+\sqrt{x}\)
\(Q=-2\sqrt{x}-2-\frac{2}{\sqrt{x}}+\sqrt{x}\)
\(Q=-\sqrt{x}-\frac{2}{\sqrt{x}}-2\)
\(\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2}\Rightarrow-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)\le-2\sqrt{2}\)
\(\Rightarrow Q\le-2\sqrt{2}-2\)
\("="\Leftrightarrow x=\sqrt{2}\)
\(\sqrt{5x+3}=\sqrt{3-\sqrt{2}}\)
\(\Leftrightarrow\sqrt{5x+3}^2=\sqrt{3-\sqrt{2}}^2\)
\(\Leftrightarrow5x+3=3-\sqrt{2}\)
\(\Leftrightarrow5x=-\sqrt{2}\)
\(\Leftrightarrow x=\frac{-\sqrt{2}}{5}\)
\(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{\left(2-2x\right)^2}-\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{\left(2-2x\right)^2}=\sqrt{3}\)
\(\Leftrightarrow\left|2-3x\right|=\sqrt{3}\)
\(\Leftrightarrow\orbr{\begin{cases}2-3x=\sqrt{3}\\2-3x=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2-\sqrt{3}}{3}\\x=\frac{2+\sqrt{3}}{3}\end{cases}}\)
ĐK \(y^2\ge9\)
\(PT\Leftrightarrow\sqrt{y^2-9}=6-2y\)
Bình phương 2 vế ta được
\(y^2-9=36-24y+4y^2\)
\(\Leftrightarrow3y^2-24y+45=0\)
\(\Leftrightarrow y^2-8y+15=0\)
\(\Leftrightarrow\left(y-3\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=5\end{cases}}\)
Vậy..................
\(\sqrt{-4x^2+25}=x\)
\(\Leftrightarrow\sqrt{-4x^2+25}^2=x^2\)
\(\Leftrightarrow-4x^2+25=x^2\)
\(\Leftrightarrow-5x^2=-25\)
\(\Leftrightarrow x^2=5\Leftrightarrow x=\pm\sqrt{5}\)
ban Marakai ko co dieu kien ma da binh phuong 2 ve len roi a