Cho tam giác ABC vuông tại A coa AB < AC, đường cao AH. Trên cạnh AC lấy
điểm E sao cho AE = AB, gọi M là trung điểm của BE. Chứng minh HM là phân
giác của góc AHC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)(1)
Đặt \(\hept{\begin{cases}x-2=a\\\sqrt{y+3}=b\left(\ge0\right)\end{cases}}\)
Xét: \(x\ge2\)
=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}x-2+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+2b=9\\a+b=-3\end{cases}}\)
Xét \(x< 2\)
=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}-\left(x-2\right)+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-a+2b=9\\a+b=-3\end{cases}}\)
Từ hệ pt trên \(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\2x+2\sqrt{y+3}=-2\end{cases}}\)
\(< =>\hept{\begin{cases}|x-2|-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)
Xét \(x\ge2\)=> \(|x-2|=\left(x-2\right)\)
\(< =>\hept{\begin{cases}x-2-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\-13+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=12\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=\sqrt{144}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\y=141\end{cases}}\)
Có ai check cái :( e mới học dạng này nên chưa chắc :(((
=\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Ta có :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{4+\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
bài này e chịu , nhưng sau những lần tìm kiếm thì đây ạ
\(4x^2=3x+4\)
\(4x^2-3x-4=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{73}}{8}\\x=\frac{3-\sqrt{73}}{8}\end{cases}\Rightarrow\orbr{\begin{cases}x=1,443\\x=-0,693\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{73}}{8}\\x=\frac{3-\sqrt{73}}{8}\end{cases}}\)
Chỉ cần tính đến đó thôi e .... ạ :P
Học tốt!!!!!!!!
ĐK: \(\hept{\begin{cases}x\ge1\\x^2-20x+24\le0\end{cases}}\)
\(x^2-20x+24+8\sqrt{3\left(x-1\right)}=0\)
\(\Leftrightarrow2\left(x^2-20x+24+8\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow2x^2-32x+32+8\left(2\sqrt{3x-3}-x+2\right)=0\)
\(\Leftrightarrow2x^2-32x+32+8\left[2\sqrt{3x-3}-\left(x-2\right)\right]=0\)
\(\Leftrightarrow2x^2-32x+32+8\frac{4\left(3x-3\right)-\left(x-2\right)^2}{2\sqrt{3x-3}+x-2}=0\)
\(\Leftrightarrow2x^2-32x+32+8\frac{12x-12-x^2+4x-4}{2\sqrt{3x-3}+x-2}=0\)
\(\Leftrightarrow2\left(x^2-16x+16\right)-8\frac{x^2-16x+16}{2\sqrt{3x-3}+x-2}=0\)
\(\Leftrightarrow\left(x^2-16x+16\right)\left(2-\frac{8}{2\sqrt{3x-3}+x-2}\right)=0\)
Xét \(2-\frac{8}{2\sqrt{3x-3}+x-2}=0\)
\(\Leftrightarrow2\sqrt{3x-3}+x-6=0\)
\(\Leftrightarrow\left(2\sqrt{3x-3}\right)^2=\left(6-x\right)^2\)
\(\Leftrightarrow12x-12=x^2-12x+36\)
\(\Leftrightarrow0=x^2-24x+48\)
Tự làm tiếp nhé ~
a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)
\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
<=> \(\hept{\begin{cases}7x-3y=5\\3x+2y=12\end{cases}}\) <=> \(\hept{\begin{cases}21x-9y=15\\21x+14y=84\end{cases}}\) <=> \(\hept{\begin{cases}-23y=-69\\3x+2y=12\end{cases}}\) <=> \(\hept{\begin{cases}y=3\\x=\frac{12-2y}{3}=\frac{12-2.3}{3}=2\end{cases}}\)
Vậy nghiệm của hpt là: (2;3)