Cho hình chữ nhật MNPQ có MK cắt đừng chéo QN tại K và vuông góc, Cho QK = 9cm; KN = 16cm. Tính chu vi và diện tích hình chữ nhật MNPQ (P/s: không talet không cos sin tan không allll, chỉ xài PyTago )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{x-m}{x+3}+\frac{x-3}{x+m}=2\)
=> \(\frac{\left(x-m\right)\left(x+m\right)+\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+m\right)}=2\)
=> \(\frac{x^2-m^2+x^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
=> \(\frac{2x^2-m^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
=> 2x2 -m2 - 9 = 2(x + 3)(x + m)
=> 2x2 - m2 - 9 = 2[x2 + (3 + m)x + 3m]
=> 2x2 -m2 - 9 = 2x2 + 2x(3 + m) + 6m
=> 2x2 - m2 - 9 - 2x2 - 2x(3 + m) - 6m = 0
=> -(m2 + 6m + 9) - 2x(m + 3) = 0
=> -(m + 3)2 - 2x(m + 3) = 0 \(\forall x\)
=> m + 3 = 0
=> m = -3
Vậy m = -3 thì phương trình có nghiệm
Ta có:\(\frac{x-m}{x+3}+\frac{x-3}{x+m}=2\)
\(\Leftrightarrow\frac{\left(x-m\right)\left(x+m\right)}{\left(x+3\right)\left(x+m\right)}+\frac{\left(x-3\right)\left(x+3\right)}{\left(x+m\right)\left(x+3\right)}=2\)
\(\Leftrightarrow\frac{x^2-m^2+x^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
\(\Leftrightarrow\frac{2x^2-m^2-9}{\left(x+3\right)\left(x+m\right)}=2\)
\(\Leftrightarrow2x^2-m^2-9=2\left[\left(x+3\right)\left(x+m\right)\right]\)
\(\Leftrightarrow2x^2-m^2-9=2\left(x^2+mx+3x+3m\right)\)
\(\Leftrightarrow2x^2-m^2-9=2x^2+2mx+6x+6m\)
\(\Leftrightarrow2x^2-m^2-9-2x^2-2mx-6x-6m=0\)
\(\Leftrightarrow-m^2-9-2mx-6x-6m=0\)
\(\Leftrightarrow-\left(m^2+6m+9\right)-2x\left(m+3\right)=0\)
\(\Leftrightarrow-\left(m+3\right)^2-2x\left(x+3\right)=0\)
\(\Leftrightarrow m+3=0\)
\(\Leftrightarrow m=-3\)
Vậy...
a, ĐKXĐ là : \(\hept{\begin{cases}x^2-5x+6\ne0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-3\right)\left(x-2\right)\ne0\\x\ne1\end{cases}\Rightarrow}x\ne3;2;1}\)
b, \(Q=\frac{2}{\left(x-2\right)\left(x-3\right)}:\frac{x-1}{x+1}=\frac{2\left(x+1\right)}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\)
Thay x = 10 ta được :
\(\frac{2\left(10+1\right)}{\left(10-2\right)\left(10-3\right)\left(10-1\right)}=\frac{22}{8.7.9}=\frac{22}{504}\)
tương tự với x = 20
\(\left(\frac{x}{x^2-36}+\frac{6-x}{6x+x^2}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)ĐKXĐ : \(x\ne3;6\)
\(=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}+\frac{6-x}{x\left(x+6\right)}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
\(=\left(\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
\(=\left(\frac{x^2-x^2+6x-9}{x\left(x-6\right)\left(x+6\right)}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
\(=\frac{3x\left(2x-3\right)\left(x+6\right)}{2x\left(x-6\right)\left(x+6\right)\left(x-3\right)}+\frac{x}{6-x}\)
\(=\frac{3\left(2x-3\right)}{2\left(x-6\right)\left(x-3\right)}-\frac{2\left(x-3\right)}{2\left(x-3\right)\left(x-6\right)}=\frac{6x-9-2x+6}{2\left(x-3\right)\left(x-6\right)}=\frac{4x-3}{2\left(x-3\right)\left(x-6\right)}\)
A B C D O M N
ta có
AB//CD do đó \(\frac{OA}{OD}=\frac{OB}{OC}\Rightarrow\frac{DA}{DO}=\frac{CB}{CO}\)
mà ta có \(\frac{AB}{MO}=\frac{CB}{CO}=\frac{DA}{DO}=\frac{AB}{NO}\Rightarrow MO=NO\)
vậy ta có đpcm
Gọi số giờ mà các công nhân 1,2,3 làm lần lượt là x,y,z (giờ)
Trong một giờ cả ba công nhân làm được số dụng cụ là :
7 + 8 + 12 = 27 dụng cụ
=> Trong 177 giờ, số dụng cụ cả ba người thợ làm được là
27 x 177 = 4779 dụng cụ.
Ta có 7x+8y+12z=47797x+8y+12z=4779
Bằng cách áp dụng tính chất mà bài toán đưa ra : x,y,z≥1x,y,z≥1
Từ đó tìm được các tổ hợp thời gian mỗi người (nói chung nhiều lắm)
Nè, Sai không chịu trách nhiệm, tôi giúp đc cậu thì giúp ko thì thôi chớ.
X3 + Y3 + Z3 = 3XYZ
<=> X3 + Y3 + Z3 - 3XYZ = 0
<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0
<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0
<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0
<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0
<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0
<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)
+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)
KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)
+) X2 + Y2 + Z2 - XY - YZ - XZ = 0
<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0
<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0
<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0
<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)
DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z
DẤU "=" XẢY RA <=> X = Y = Z
KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)
\(\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+4x+4+x^2-4=0\)
\(\Leftrightarrow2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Có năm con dê, ba con trâu và chín con gà mái. Có bao nhiêu chân?
Gia đình có sáu cô con gái, mỗi cô con gái đều có một anh trai. Gia đình có mấy người?
Nhớ trả lời những câu hỏi mà mình đưa ra nhé.
Trl:
There are five goats,three buffaloes and nine hens.How many legs are there?
Dịch: Có 5 con dê, 3 con trâu và 9 con gà trống. Hỏi có bao nhiêu chiếc chân tất cả?
The family has six daughters, each daughters has a brother. How many people are there in the family?
Dịch: Một gia đình có 6 người con gái, mỗi người con gái có một người anh trai. Hỏi có bao nhiêu người ở trong gia đình đó?
Mà mình khuyên các bạn không nên dùng gg dịch để dịch cả câu, dịch từ thì được
Đặt \(MK=x\left(x>0\right)\)
Áp dụng định lý Pythagoras, ta được: \(x^2+QK^2=MQ^2\Rightarrow x^2=MQ^2-81\)(\(\Delta MKQ\)vuông tại K)
\(x^2+NK^2=MN^2\Rightarrow x^2=MN^2-256\)(\(\Delta MKN\)vuông tại K)
Từ đó suy ra \(2x^2=\left(MN^2+MQ^2\right)-337=NQ^2-337=288\Rightarrow x=12\)(Do x > 0)
\(\Rightarrow MN=\sqrt{12^2+16^2}=20cm\); \(MQ=\sqrt{12^2+9^2}=15cm\)
\(\Rightarrow P_{MNPQ}=\left(20+15\right).2=70\left(cm\right);S_{MNPQ}=20.15=300\left(cm^2\right)\)
b, vì MNPQ là hình chữ nhật => MN//NP
=> ˆMQN=ˆQNPMQN^=QNP^ (so le trong)
xét ΔMKQΔMKQ và ΔQPNΔQPN có
ˆMQN=ˆQNPMQN^=QNP^ (cmt)
ˆMKQ=ˆNPQ=90oMKQ^=NPQ=90o^
=> ΔMKQΔMKQ đồng dạng với ΔQPNΔQPN (g.g)
=> MQNQ=MKQP(đpcm)MQNQ=MKQP(đpcm)