Rút gọn
a) A = 7/1*3 + 7/3*5 + 7/5*7 + ... + 7/49*51
b) B = 10/56 + 10/140 + 10/260 + .... + 10/1400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn
a) A = 7/1*3 + 7/3*5 + 7/5*7 + ... + 7/49*51
b) B = 10/56 + 10/140 + 10/260 + .... + 10/1400
Ta có: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2=0\)
\(\Leftrightarrow2\left(xy+yz+zx\right)=0\)
\(\Leftrightarrow xy+yz+zx=0\)
Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b;\dfrac{1}{z}=c\Rightarrow\dfrac{3}{xyz}=3abc\)
Lại có: \(xy+yz+zx=0\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=0\)
\(\Leftrightarrow\dfrac{a+b+c}{abc}=0\Leftrightarrow a+b+c=0\)
Khi đó, xét hiệu: \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}-\dfrac{3}{xyz}\)
\(=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=0\) (do \(a+b+c=0\))
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\) (đpcm)
\(Toru\)
0,87 : 0,2 + 0,87 × 9 - 0,87 : 0,25
= 0,87 × 5 + 0,87 × 9 - 0,87 × 4
= 0,87 × (5 + 9 - 4)
= 0,87 × 10
= 8,7
a: g=9x
nên g tỉ lệ thuận với x theo hệ số tỉ lệ là k=9
b: s*h=-130
=>s và h tỉ lệ nghịch với nhau theo hệ số tỉ lệ là k=-130
a) Xét hai tam giác vuông: ∆ABE và ∆MBE có:
BA = BM (gt)
BE là cạnh chung
⇒ ∆ABE = ∆MBE (cạnh huyền - cạnh góc vuông)
b) Do ∆ABE = ∆MBE (cmt)
⇒ ∠ABE = ∠MBE (hai góc tương ứng)
⇒ ∠ABN = ∠MBN
Xét ∆ABN và ∆MBN có:
BA = BM (gt)
∠ABN = ∠MBN (cmt)
BN là cạnh chung
⇒ ∆ABN = ∆MBN (c-g-c)
⇒ AN = MN (hai cạnh tương ứng)
c) Do ∆ABN = ∆MBN (cmt)
⇒ ∠BAN = ∠BMN (hai góc tương ứng)
Mà ∠BAN = ∠BAC = 90⁰ (∆ABC vuông tại A)
⇒ ∠BMN = 90⁰
⇒ MN ⊥ BM
⇒ MN ⊥ BC
Lại có AH là đường cao của ∆ABC (gt)
⇒ AH ⊥ BC
Mà MN ⊥ BC (cmt)
⇒ AH // MN
⇒ ∠MGN = ∠ANG (so le trong)
a: \(A=\dfrac{7}{1\cdot3}+\dfrac{7}{3\cdot5}+...+\dfrac{7}{49\cdot51}\)
\(=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{7}{2}\left(1-\dfrac{1}{51}\right)=\dfrac{7}{2}\cdot\dfrac{50}{51}=\dfrac{175}{51}\)
b: \(B=\dfrac{10}{56}+\dfrac{10}{140}+\dfrac{10}{260}+...+\dfrac{10}{1400}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+...+\dfrac{5}{700}\)
\(=\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+...+\dfrac{5}{25\cdot28}\)
\(=\dfrac{5}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{5}{3}\cdot\dfrac{6}{28}=\dfrac{5}{3}\cdot\dfrac{3}{14}=\dfrac{5}{14}\)