\(\hept{\begin{cases}|x+y|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|=17\end{cases}}\)
giải chi tiết hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bddt Bunhiacopski dạng phân thức:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\frac{9}{4}\)
\(\Rightarrow-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le\frac{-9}{4}\)
\(\Rightarrow3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le\frac{3}{4}\)
Dấu "=" khi x = y = z = \(\frac{1}{3}\)
5 tập vở sẽ tăng số tiền là:
800*5=4000 (đ)
3 chiếc bút sẽ giảm số tiền là:
1000*3=3000(đ)
vì số tiền giảm bé hơn số tiền tăng nên bạn Tám sẽ thiếu tiền và sẽ thiếu 1000đ
\(x\left(x^2+x+1\right)=4^y-1\)
\(\Leftrightarrow x^3+x^2+x+1=4^y\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=4^y\)( 1 )
Do x,y \(\in\)Z . Từ ( 1 )\(\Rightarrow x,y\ge0\)
Nếu x = 0 \(\Rightarrow\)y = 0 ( thỏa mãn )
Nếu x > 0 \(\Rightarrow\)y > 0 \(\Rightarrow\)x + 1 chẵn
Đặt x = 2k + 1 ( k \(\in\)N )
( 1 ) trở thành : \(\left(2k+2\right)\left(4k^2+4k+2\right)=4^y\)
\(\Leftrightarrow\left(k+1\right)\left(2k^2+2k+1\right)=4^{y-1}\)
Vì \(2k^2+2k+1\)là số lẻ mà ước lẻ của \(4^{y-1}\)chỉ có 1
\(\Rightarrow2k^2+2k+1=1\Rightarrow k=0\)
\(\Rightarrow x=1\Rightarrow y=1\)( t/m )
Vậy PT đã cho có nghiệm ( x ;y ) là ( 1 ; 1 ) ; (0 ; 0 )
\(\hept{\begin{cases}\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\left|x+y\right|-3\left|x-y\right|=27\\3\left|x+y\right|+2\left|x-y\right|=17\end{cases}}\)
\(\Leftrightarrow5\left|x-y\right|=-10\)???
5|x - y| > 0 k thể bằng -10 đc , đề sai ạ ?
Từ PT trên \(< =>\hept{\begin{cases}2|x+y|-2|x-y|=18\\3|x+y|+2|x-y|=17\end{cases}}\)
\(< =>\hept{\begin{cases}5|x+y|=35\\2|x+y|-2|x-y|=18\end{cases}}\)
\(< =>\hept{\begin{cases}|x+y|=7\\2.7-2|x-y|=18\end{cases}}\)
\(< =>\hept{\begin{cases}|x+y|=7\\|x-y|=-2\end{cases}}\)(vô lý , vì \(|x-y|\ge0\))
Đề sai rồi bn ơi ~!