K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

<=> x^2+2x=x^2+3x

<=>x=0

vậy ....

hok tốt

...

26 tháng 3 2020

\(A=\frac{12x^2}{x+3}\)

\(12x^2\ge0\forall x\Rightarrow A< 0\Leftrightarrow x+3< 0\)

\(\Leftrightarrow x< -3\)

~~

26 tháng 3 2020

ĐKXĐ: \(x\ne\pm1;x\ne0\)

a, \(A=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x}{5\left(x-1\right)}\)

\(\frac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{5\left(x-1\right)}{2x}\)

\(\frac{20x\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

\(\frac{10}{x+1}\)

Vậy ......

b, Thay x=3 vào A

A= \(\frac{10}{4}=\frac{5}{2}\)

Vì x khác -1 nên ko cần tính TH này

c, Cho A = 2

=> \(\frac{10}{x+1}=2\)

=> \(2x+2=10\)

=> x= 4

vậy ......

hok tốt

26 tháng 3 2020

=( \(\frac{x^2+1-x-1}{x+1}\))\(\left(\frac{2x+2}{x^2-x}\right)\)

\(\frac{2\left(x^2-x\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x\right)}\)

=2

vậy ....

hok tốt

.....

26 tháng 3 2020

\(\left(2x-1\right)\left(x-5\right)-2x^2+10x-25=0\)

\(\Leftrightarrow2x^2-11x+5-2x^2+10x-25=0\)

\(\Leftrightarrow2x^2-2x^2-11x+10x=25-5\)

\(\Leftrightarrow-x=20\)

\(\Leftrightarrow x=-20\)

26 tháng 3 2020

<=> 2x^2 - 11x + 5 - 2x^2 + 10x -25 =0

26 tháng 3 2020

oh, mk cũng lp 7, bài trên mk bó tay. com

26 tháng 3 2020

\(5\left(x+4\right)\left(x-4\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4-96+80\)

\(\Leftrightarrow-2x=-16\)

\(\Leftrightarrow x=8\)

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)