tìm giá trị nhỏ nhất của biểu thức:
a) \(A=|x-9|+|10-x|\)
b) \(B=|x-1945|+|x-1954|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2}{3}x^2y^3\left(-\frac{6}{5}xy\right)\)
\(A=-\frac{4}{5}x^3y^4\)
+Hệ số : \(-\frac{4}{5}\)
+Biến : x3y4
+Bậc : 7
B=(-3x2y3)(5x2y)
B=-15x4y4
+Hệ số : -15
+Biến x4y4
+Bậc : 8
b) \(A.B=\left(-\frac{4}{5}x^3y^4\right)\left(-15x^4y^4\right)\)
\(=12x^7y^8\)
#H
(Sai=sửa)
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔBAC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(Hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Ta có: ΔADE cân tại A
mà AM là đường cao
nên AM là phân giác của góc EAD
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
d: Gọi giao điểm của BH và CK là O
Ta có: góc HDB=góc KEC
=>90 độ-góc HDB=90 độ-góc KEC
=>góc OBC=góc OCB
=>OB=OC
hay O nằm trên đường trung trực của BC
=>A,M,O thẳng hàng
=>AM,BH,CK đồng quy
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
mk ko viết lại đề nhá
<=> M=(−3𝑥^2𝑦^3)(1/3𝑥2𝑦)^2
<=> M=(−3𝑥^2𝑦^3)(1𝑥^2𝑦/3)^2
<=> M=(−3𝑥^2𝑦^3)(𝑥^2𝑦^/3)^2
<=> M=(−3𝑥^2𝑦^3)(𝑥^2𝑦/3)^2
ta có: p là số nguyên tố lớn hơn 3 ⇔ (p;3)=1.
vì p; p+1; p+2 là 3 số tự nhiên liên tiếp.
⇒ p, p+1, p+2 có 1 trong 3 số chia hết cho 3.
mà (p;3)=1 nên p+1; p+2 có 1 số chia hết cho 3.
Vậy p+1,p+2 có 1 số chia hết cho 3.
\(A=\left|x-9\right|+\left|10-x\right|\)
Ta có:
\(\left|x-9\right|\ge x-9\forall x\)
\(\left|10-x\right|\ge10-x\forall x\)
\(\Rightarrow\left|x-9\right|+\left|10-x\right|\ge x-9+10-x\)
\(\Rightarrow A\ge1\)
Dấu bằng xảy ra
\(\Leftrightarrow\orbr{\begin{cases}x-9\ge0\\10-x\ge0\end{cases}\Leftrightarrow9\le x\le10}\)
Vậy minA = 1 \(\Leftrightarrow9\le x\le10\)
\(B=\left|x-1945\right|+\)\(\left|x-1954\right|\)
Ta có:
\(\left|x-1945\right|\ge x-1945\forall x\)
\(\left|x-1954\right|\ge1954-x\forall x\)
\(\Leftrightarrow\left|x-1945\right|+\left|x-1954\right|\ge x-1945+1954-x\)
\(\Leftrightarrow B\ge9\)
Dấu bằng xảy ra
\(\Leftrightarrow\orbr{\begin{cases}x-1945\ge0\\1954-x\ge0\end{cases}\Leftrightarrow1945\le x\le1954}\)
Vậy minB = 9 \(\Leftrightarrow1945\le x\le1954\)