Cho tam giác ABC vuông tại A, nội tiếp trong đường tròn (O). M là một điểm tuỳ ý thuộc đường tròn (O). Gọi I là trung điểm của đoạn AM và H là hình chiếu vuông góc của I trên đường thẳng CM. Hãy xác định vị trí của M sao cho tam giác ACH có diện tích lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)
mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)
\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp
\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)
câu c tí nữa làm :P
c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD
Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)
Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)
\(\Rightarrow ID.IH=IE.IF\)
\(ĐKXĐ:x\ne\pm1\)
\(A=\left(1+\frac{\sqrt{x}}{x+1}\right)\div\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{x+1}:\frac{\sqrt{x}-1}{x+1}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
Phương trình sau <=> \(\left(1+3x+2x^2\right)\left(1+3x\right)=\left(1+3y+2x^2\right)\left(1+3y\right)\)
<=> \(\left(1+3x\right)^2+2x^2\left(1+3x\right)-\left(1+3y\right)^2-2x^2\left(1+3y\right)=0\)
<=> \(\left[\left(1+3x\right)^2-\left(1+3y\right)^2\right]+\left[2x^2\left(1+3x\right)-2x^2\left(1+3y\right)\right]=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y\right)+2x^2\left(3x-3y\right)=0\)
<=> \(\left(3x-3y\right)\left(2+3x+3y+2x^2\right)=0\)
<=> \(\orbr{\begin{cases}x=y\\2x^2+3x+3y+2=0\end{cases}}\)
Với x = y ta có hệ : \(\hept{\begin{cases}x-5y=-20\\x=y\end{cases}}\Leftrightarrow x=y=5\)
Với \(2x^2+3x+3y+2=0\)ta có hệ: \(\hept{\begin{cases}x-5y=-20\\2x^2+3x+3y+2=0\end{cases}}\) hệ này đơn giản em tự giải tiếp!