câu 1:
a) cho \(S=1+3+3^2+3^3+...+3^{96}+3^{97}+3^{98}+3^{99}\)Chứng minh S chia hết cho 40
b) Rút gọn phân thức: \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hàngGiải thích các bước giải:
Bài 1:
a.Ta có : II là trung điểm BC →OI⊥BC→N→OI⊥BC→N là điểm chính giữa cung BC
→AD→AD là phân giác ˆBACBAC^
b.Ta có :MAMA là tiếp tuyến của (O)
→ˆMAB=ˆMCA→ΔMAB∼ΔMCA(g.g)→MAB^=MCA^→ΔMAB∼ΔMCA(g.g)
→MAMC=MBMA→MA2=MB.MC→MAMC=MBMA→MA2=MB.MC
Lại có :
MA là tiếp tuyến của (O)→ˆMAB=ˆMCA→MAB^=MCA^
ADAD là phân giác ˆBAC→ˆBAD=ˆDACBAC^→BAD^=DAC^
→ˆMDA=ˆDAC+ˆBCA=ˆBAD+ˆMAB=ˆMAB→MDA^=DAC^+BCA^=BAD^+MAB^=MAB^
→ΔMAD→ΔMAD cân tại M
→MD=MA→MD2=MB.MC→MD=MA→MD2=MB.MC
c.Ta có : NH⊥AH,NI⊥BC,NK⊥ACNH⊥AH,NI⊥BC,NK⊥AC
→NHBI,NIKC,NHAK→NHBI,NIKC,NHAK nội tiếp
→ˆBIH=ˆBNH=90o−ˆHBN=90o−ˆNCA=ˆKNC=ˆKIC→BIH^=BNH^=90o−HBN^=90o−NCA^=KNC^=KIC^
(ˆHBN=ˆNCAHBN^=NCA^ cùng bù ˆABNABN^)
ˆBIH=ˆKICBIH^=KIC^ mà chúng ở vị trí đối đỉnh B,I,CB,I,C thẳng hàng
→H,I,K→H,I,K thẳng hà
Gọi phương trình đường thẳng đi qua hai điểm A và B là: y = ax + by = ax+b. A thuộc đường thẳng y = ax + by = ax+b nên: 0.a + b = 2 ⇔ b = 2 0.a+b = 2⇔b = 2. B thuộc đường thẳng y = a x + b y=ax+b nên: ( − 3 ) a + b = 4 (−3)a+b=4 ⇔ a = 4 − b − 3 ⇔a=4−b−3 = 4 − 2 − 3 = − 2 3 =4−2−3=−23. Vậy phương trình đường thẳng AB là: y = − 2 3 x + 2 y=−23x+2. Do − 2 3 .6 + 2 = − 2 −23.6+2=−2 nên C thuộc đường thẳng AB hay A, B, C thẳng hàng.
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
vt pt hoành độ giao điểm rùi giải pt bậc hai thôi bạn