3x\(^2\)+ 6 - 7\(\sqrt{3x^2+2}\)= 0
Làm theo kiểu đặt t đc không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow2x^2-17+20-5\sqrt{2x^2-1}=0\)
\(\Leftrightarrow2x^2-17+\frac{5\cdot\left(17-2x^2\right)}{20+5\sqrt{2x^2-1}}=0\)
\(\Leftrightarrow\left(2x^2-17\right)\left(1-\frac{5}{20+5\sqrt{2x^2-1}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{17}{2}}\\20+5\sqrt{2x^2-1}=5\end{cases}}\)\(\Leftrightarrow5\sqrt{2x^2-1}=-15\)(vô lý)
Vậy \(x=\sqrt{\frac{17}{2}}\)
Ta có:
\(\sqrt{2-x}\ge0\forall x\le2\)
\(\Rightarrow K=x+\sqrt{2-x}\le2\forall x\le2\)
Dấu"=" xảy ra <=> \(x=2\)
\(\Leftrightarrow x^2+y^2+1+2x+2y+2xy=3\left(x^2+y^2+1\right)\)
\(\Leftrightarrow2x^2+2y^2+2-2x-2y-2xy=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2+y^2-2xy\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow x=y=1\)
Thay a^3+b^3=(a+b)^3 -3ab(a+b) .
Ta có :a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)=0
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
Luôn đúng do a+b+c=0
Trả lời
bạn vào câu hỏi tương tự nha
link đây
Câu hỏi của Trần Thanh Hà - Toán lớp 8 | Học trực tuyến
Mk sẽ gửi lại link vào vào tin nhắn cho bạn
Study ưell
a. Dat \(x^2=t\left(t\ge0\right)\)
Suy ra PT:\(\orbr{\begin{cases}t^2=-4t+1\left(1\right)\left(x< 0\right)\\t^2=4t+1\left(2\right)\left(x\ge0\right)\end{cases}}\)
(1)\(\Leftrightarrow t^2+4t-1=0\)
\(\Leftrightarrow\left(t+2\right)^2-5=0\)
\(\Leftrightarrow\left(t+2+\sqrt{5}\right)\left(t+2-\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=-2-\sqrt{5}\left(l\right)\\t=\sqrt{5}-2\left(n\right)\end{cases}}\)
Nghiem cua PT(1) la \(t=\sqrt{5}-2\)
(2)\(\Leftrightarrow t^2-4t-1=0\)
\(\Leftrightarrow\left(t-2\right)^2-5=0\)
\(\Leftrightarrow\left(t-2+\sqrt{5}\right)\left(t-2-\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=2-\sqrt{5}\left(l\right)\\t=2+\sqrt{5}\left(n\right)\end{cases}}\)
Nghiem cua PT(2) la \(t=2+\sqrt{5}\)
Suy ra:\(\orbr{\begin{cases}x=\sqrt{\sqrt{5}-2}\\x=\sqrt{\sqrt{5}+2}\end{cases}}\)
b.\(x^3-3x^2+9x-9=0\)
\(\Leftrightarrow\left(x-3\right)^3=-18\)
\(\Leftrightarrow x-3=-\sqrt[3]{18}\)
\(\Leftrightarrow x=3-\sqrt[3]{18}\)
\(b,x^3-3x^2+9x-9=0\)
\(\Rightarrow x^2\left(x-3\right)+9\left(x-3\right)+18=0\)
\(\Rightarrow\left(x^2+9\right)\left(x-3\right)=-18\)
từ đây bạn xét các TH nhá !
Chú ý : Vì \(x^2+9\ge9\forall\) để xét ít Th hơn
M N P K E F 1 1 1
mk chỉ nêu hướng giải còn bn tự trình bày nha
a,Ta có MN=3cm ,MP=4cm
=>NP=5cm
Ta có MN2=NK.NP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )
=>NK=32:5=1,8cm
T2 BN TÍNH ĐC KP
Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)
=>MK=2,4cm
Lại có MK2=MF.MP
=>MF=1,44cm
b, bn C/m MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)
Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)
=> \(\widehat{E_1}+\widehat{N}=90^O\)
Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)
\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)
tk mk nha
chúc bn học giỏi
\(\sqrt{3x^2+2}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow t^2-7t+4=0\)
\(\Leftrightarrow t=\frac{7\pm\sqrt{33}}{2}\)
bạn giải típ nhá