K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Khi về đến nhà, Tôi Nhận ra tôi đã để quên túi xách ở cửa hàng

26 tháng 1 2021

Khi về đến nhà,tôi nhận ra mình đã quên túi ở cửa hàng

exercise 5: viết lại câu 

1) No one in my class is more intelligent than Lan.

= Lan is the most intelligent in my class .

2) WE DON'T KNOW A HAPPIER PERSON THAN IM.

= HE IS HAPPIEST  PERSON WE KNOW .

25 tháng 1 2021

ĐKXĐ : x ≠ -2021

( bài này xét x > 0 nhé, x ≤ 0 thì tìm không ra đâu )

Áp dụng bất đẳng thức AM-GM ta có :

\(x+2021\ge2\sqrt{2021x}\)

=> \(\left(x+2021\right)^2\ge8084x\)

=> \(\frac{1}{\left(x+2021\right)^2}\le\frac{1}{8084x}\)

=> \(\frac{x}{\left(x+2021\right)^2}\le\frac{1}{8084}\)

Đẳng thức xảy ra <=> x = 2021

Vậy GTLN của biểu thức = 1/8084, đạt được khi x = 2021

25 tháng 1 2021

** Bài này đúng với mọi số \(x\in\left\{x|x\inℝ,x\ne-2021\right\}\)chứ không riêng gì x > 0.

Ta có: \(\frac{x}{\left(x+2021\right)^2}=\left(\frac{x}{\left(x+2021\right)^2}-\frac{1}{8084}\right)+\frac{1}{8084}=\frac{-\left(x-2021\right)^2}{8084\left(x+2021\right)^2}+\frac{1}{8084}\le\frac{1}{8084}\)

Đẳng thức xảy ra khi x = 2021

25 tháng 1 2021

Chị ơi câu 1 viết lại là Mai's sister is uglier than Mai  . Câu 2 viết lại là Ha Noi is noisier than Hai Duong

 Em gửi bài chị nhé

25 tháng 1 2021

Chào em, em tham khảo nhé!

1) Mai is prettier than her sister

= Mai's sister isn't prettier than her.

2) Hai Duong isn't so noisy as Ha Noi.

= Ha Noi is noisier than Hai Duong.

Chúc em học tốt và có những trải nghiệm tuyệt vời tại olm.vn!

25 tháng 1 2021

Bài 3 : Theo bài ra ta có : \(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow x=3;2\)(*) 

\(x+\left(x-2\right)\left(2x+1\right)=2\)

\(\Leftrightarrow x-2+\left(x-2\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+2\right)=0\Leftrightarrow x=2;-1\)(**) 

Dựa vào (*) ; (**) dễ dàng chứng minh được a;b nhé

c, Ko vì phương trình (*) ko có nghiệm -1 hay phương trình (**) ko có nghiệm 3 nên 2 phương trình ko tương đương

DD
25 tháng 1 2021

\(\left(x^2+x\right)\left(x^2+x+2\right)=-1\)

\(\Leftrightarrow\left(x^2+x+1-1\right)\left(x^2+x+1+1\right)=-1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2-1^2=-1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2=0\)

\(\Leftrightarrow x^2+x+1=0\)(vô nghiệm)

26 tháng 1 2021

a) đkxđ: \(x\ne\pm2\)

Ta có: \(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{4}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow8x=4\)\(\Rightarrow x=\frac{1}{2}\)

b) đkxđ: \(x\ne\left\{1;-3\right\}\)

PT \(\Leftrightarrow\frac{\left(x+1\right)\left(x+3\right)-\left(x+2\right)\left(x-1\right)+4}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Rightarrow x^2+4x+3-x^2-x+2+4=0\)

\(\Leftrightarrow3x+10=0\Rightarrow x=-\frac{10}{3}\)

26 tháng 1 2021

c) đkxđ: \(x\ne\left\{0;-1\right\}\)

\(PT\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)+1-2x}{x\left(x+1\right)}=\frac{x}{x\left(x+1\right)}\)

\(\Rightarrow x^2-1+1-2x=x\)

\(\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)

d) đkxđ: \(x\ne\left\{1;5\right\}\)

\(PT\Leftrightarrow\frac{x-1-3}{\left(x-1\right)\left(x-5\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)

\(\Rightarrow x-4=5x-25\)

\(\Leftrightarrow4x=21\Rightarrow x=\frac{21}{4}\)

e) đkxđ: \(x\ne\left\{0;-2;2\right\}\)

\(PT\Leftrightarrow\frac{-2x+x+2}{x\left(x-2\right)\left(x+2\right)}=\frac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow-x+2=x^2-6x+8\)

\(\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

DD
25 tháng 1 2021

\(\frac{1}{x^2}+\frac{2}{x^2+1}+\frac{3}{x^2+2}+\frac{4}{x^2+3}=4\)

\(\Leftrightarrow\frac{1}{x^2}-1+\frac{2}{x^2+1}-1+\frac{3}{x^2+2}-1+\frac{4}{x^2+3}-1=0\)

\(\Leftrightarrow\frac{1-x^2}{x^2}+\frac{1-x^2}{x^2+1}+\frac{1-x^2}{x^2+2}+\frac{1-x^2}{x^2+3}=0\)

\(\Leftrightarrow1-x^2=0\Leftrightarrow x=\pm1\)

DD
25 tháng 1 2021

\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)(ĐK: \(x\ne\pm1\))

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2\left(x+2\right)^2}{\left(x^3-1\right)\left(x^3+1\right)}\)

\(\Leftrightarrow\frac{x^2-1}{x^3-1}-\frac{x^2-1}{x^3+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)

\(\Leftrightarrow\left(x^2-1\right)\frac{x^3+1-\left(x^3-1\right)}{x^6-1}=\frac{2\left(x+2\right)^2}{x^6-1}\)

\(\Rightarrow x^2-1=\left(x+2\right)^2\)

\(\Leftrightarrow x=-\frac{5}{4}\)(thử lại thỏa mãn).