K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

những người muôn năm cũ. hồn ở đâu bây giờ

hồn ở đây được coi là những người thuê viết chữ trong ngày tết. Câu hỏi tu từ như xoáy vào tâm can của người đọc về những nét đẹp tinh hoa của dân tộc dã vĩnh viễn chìm vào quá khứ. Khổ cuối thể hiện khung cảnh quen thuộc trong ngày Tết cổ truyền năm xưa đã thuộc về dĩ vãng, xưa cũ, quá khứ. Cho đến khi phong tục phương Tây xâm nhập vào nước ta thời ấy, ông đồ không còn được đắc ý như xưa cũ nữa, và những người thuê viết đã đi mất. Ông đồ vẫn ngồi đấy. 

28 tháng 1 2021

Hồn ở trong câu trên thể hiện tính bộc lộ tình cảm, cảm xúc của tác giả.

DD
28 tháng 1 2021

Kẻ \(CH//AG\)và các điểm như hình vẽ. 

Trong tam giác \(BCF\)\(\widehat{FBC}+\widehat{BCF}+\widehat{CFB}=180^o\)

Trong tam giác \(ADE\)\(\widehat{DAE}+\widehat{DEA}+\widehat{ADE}=180^o\)

\(BC//AD\Rightarrow\widehat{FBC}=\widehat{EDA}\)(Hai góc so le trong) 

\(CH//AG\Rightarrow\widehat{CFB}=\widehat{AED}\)(Hai góc so le trong) 

Suy ra \(\widehat{BCF}=\widehat{DAE}\).

Xét tam giác \(DAE\)và tam giác \(BCF\)có: 

\(\widehat{BCF}=\widehat{DAE}\)(cmt)

\(DA=BC\)(tính chất hình bình hành)

\(\widehat{CBF}=\widehat{ADE}\)(cmt)

Suy ra \(\Delta DAE=\Delta BCF\)

Suy ra \(DE=BF\)(hai cạnh tương ứng). 

Có: \(\frac{DG}{GC}=\frac{DE}{EF}=\frac{DE}{EB-BF}=\frac{DE}{EB-DE}\Rightarrow\frac{GC}{DG}=\frac{EB-DE}{DE}=4-1=3\Rightarrow\frac{DG}{GC}=\frac{1}{3}\)

28 tháng 1 2021

Ta có: \(M=\frac{1}{\left(x-2\right).\left(x-3\right)}+\frac{1}{\left(x-3\right).\left(x-4\right)}+\frac{1}{\left(x-4\right).\left(x-5\right)}+\frac{1}{\left(x-5\right).\left(x-6\right)}\)

   \(\Leftrightarrow M=\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-6}\)

   \(\Leftrightarrow M=\frac{1}{x-2}-\frac{1}{x-6}\)

   \(\Leftrightarrow M=\frac{x-6-x+2}{\left(x-2\right).\left(x-6\right)}\)

   \(\Leftrightarrow M=-\frac{4}{x^2-8x+12}\)

28 tháng 1 2021

tau đéo biết

28 tháng 1 2021

Vì \(abc=2\)nên ta có:

\(M=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc.c}{ac+abc.c+abc}\)

\(=\frac{a}{a\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(1+bc+b\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+c+1}\)

\(=\frac{1+b+bc}{bc+c+1}=1\)

28 tháng 1 2021

câu trả lời;

1488464864_ab.jpg

28 tháng 1 2021

ĐKXĐ : x ≠ ±1

pt <=> \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{4}{\left(x-1\right)\left(x+1\right)}=0\)

<=> \(\frac{x^2+2x+1-x^2+2x-1-4}{\left(x-1\right)\left(x+1\right)}=0\)

<=> \(\frac{4x-4}{\left(x-1\right)\left(x+1\right)}=0\)

=> 4x - 4 = 0 

<=> x = 1 ( ktm )

Vậy phương trình vô nghiệm 

28 tháng 1 2021

Gọi h(x) là thương trong phép chia f(x) cho g(x)

Vì f(x) bậc 3, g(x) bậc 2 => h(x) bậc nhất

=> h(x) có dạng cx + d

f(x) ⋮ g(x) <=> f(x) = g(x).h(x)

<=> x3 + ax2 + 2x + b = ( x2 + x + 1 )( cx + d )

<=> x3 + ax2 + 2x + b = cx3 + dx2 + cx2 + dx + cx + d

<=> x3 + ax2 + 2x + b = cx3 + ( d + c )x2 + ( d + c )x + d

Đồng nhất hệ số ta có :

\(\hept{\begin{cases}c=1\\d+c=a=2\\d=b\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=c=d=1\end{cases}}\)

Vậy a = 2 , b = 1

28 tháng 1 2021

Vì \(f \left(x\right)⋮g\left(x\right)\)\(\Rightarrow\)\(f\left(x\right)=g\left(x\right).Q\left(x\right)\)     

Đặt \(Q\left(x\right)=cx+d\)          \(\left(c,d\ne0\right)\)

\(\Rightarrow\)\(f\left(x\right)=\left(x^2+x+1\right).\left(cx+d\right)\)

\(\Leftrightarrow\)\(f\left(x\right)=cx^3+dx^2+cx^2+dx+cx+d\)

\(\Leftrightarrow\)\(x^3+ax^2+2x+b=cx^3+\left(d+c\right)x+\left(d+c\right)x+d\)

Đồng nhất hệ số, ta có:

      \(c=1\)                                             \(a=2\)

      \(d+c=a\)              \(\Leftrightarrow\)           \(b=1\)

      \(d+c=2\)                                    \(c=1\)\(\left(TM\right)\)

      \(d=b\)                                             \(d=1\)\(\left(TM\right)\)

Vậy \(f \left(x\right)⋮g\left(x\right)\)khi  \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)