K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

 ĐKXĐ: \(x\ge0\)

\(-2x-3\sqrt{x}+2\)

\(=-2\left(x+\frac{3}{2}\sqrt{x}-1\right)\)

\(=-2\left(\sqrt{x}+\frac{3}{4}\right)^2+\frac{25}{8}\le\frac{25}{8}\forall x\ge0\)

Để bt đạt GTLN => \(-2\left(\sqrt{x}+\frac{3}{4}\right)^2\) lớn nhất

\(\Rightarrow\sqrt{x}+\frac{3}{4}\) nhỏ nhất

\(\Rightarrow x=0\) \(\Rightarrow\) GTLN của bt = \(2\)

24 tháng 8 2019

GTLN là gì vậy bạn, bạn giải thích hộ tớ được không?

24 tháng 8 2019

GTLN= Giá trị lớn nhất đó bn!

25 tháng 8 2019

A B C I K P

Do tam giác ABC đều nên \(AB=BC=CA=x\)

Kết hợp I, K, P là trung điểm AB, AC, BC suy ra:

IB = BP = \(\frac{x}{2}\). Do đó \(\Delta\)IBP cân tại B có một góc là 60o (^B) nên nó là tam giác đều:

Do đó: \(\left(IB=\right)BP=IP=\frac{a}{2}\) . Suy ra B và I cùng cách P một khoảng \(\frac{a}{2}\) nên B và I cùng thuộc đường trong tâm P, bán kính \(\frac{a}{2}\)(1). Tương tự:

K và C cùng cách P một khoảng \(\frac{a}{2}\) nên K và C cùng thuôc đường trong tâm P bán kính ​\(\frac{a}{2}\)​ (2)

Từ (1) và (2) suy ra B, I, K, C cùng thuộc đường tròn tâm P bán kính \(\frac{a}{2}\) nên ta có đpcm.

P/s: em mới học nên ko chắc đâu ạ!

25 tháng 8 2019

Ta có \(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

TT
=> \(VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\)

Áp dụng cosi \(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)

Tương tự với các phân thức còn lại 

=> \(VT+\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{4}\left(a+b+c\right)\)

=> \(VT\ge\frac{a+b+c}{4}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=3

25 tháng 8 2019

a.\(DK:\frac{2}{3}\le x< 4\)

b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\) 

c.\(DK:x\le-3\)

25 tháng 8 2019

Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn

24 tháng 8 2019

Có xy + yz + zx = 1

=> 1 + x2 = x2 + xy + yz + zx

     1 + x2 = (x + y)(y + z)

Tương tự ta có: 

     1 + y2 = (y + x)(y + z)

     1 + z2 = (z + x)(z + y)

Thay vào P, ta được:

\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(P=xy+yz+zx+xy+yz+zx\)

\(P=2\left(xy+yz+zx\right)=2\)

Vậy P = 2

24 tháng 8 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm: \(LHS=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=RHS\)

Đẳng thức xảy ra khi \(a=b=c\)

24 tháng 8 2019

Bạn lên web h.vn để được giải đáp tốt hơn với các câu liên quan đến Hóa nhé!

8 tháng 9 2019

a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)

\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)

\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)

Vậy x = y = 1

b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)

\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Lập bảng:

\(a-n-1\)\(1\)\(7\)\(-1\)\(-7\)
\(a+n+1\)\(7\)\(1\)\(-7\)\(-1\)
\(a-n\)\(2\)\(8\)\(0\)\(-6\)
\(a+n\)\(6\)\(0\)\(-8\)\(-2\)
\(a\)\(4\)\(4\)\(-4\)\(-4\)
\(n\)\(2\)\(-4\)\(-4\)\(2\)

Mà n là số tự nhiên nên n = 2.