ô tô và xe máy cùng ik quãng đường 150 km. với vận tốc ô tô lớn hơn xe máy đến 1h nên ik sớm hơn 30p.tính vận tốc môi xe ( bài toán lập pt)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
=>AD\(\perp\)MC tại D
=>\(\widehat{ADM}=90^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
=>\(\widehat{MHA}=90^0=\widehat{MDA}\)
=>MDHA nội tiếp
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(3\right)\)
Xét ΔACM vuông tại A có AD là đường cao
nên \(MD\cdot MC=MA^2\left(4\right)\)
Từ (3),(4) suy ra \(MH\cdot MO=MD\cdot MC\)

Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>BC\(\perp\)AM tại C
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)MB tại D
Xét ΔMAB có
AD,BC là các đường cao
AD cắt BC tại I
Do đó: I là trực tâm của ΔMAB
=>MI\(\perp\)AB
mà MH\(\perp\)AB
và MI,MH có điểm chung là M
nên M,I,H thẳng hàng
Xét tứ giác MCID có \(\widehat{MCI}+\widehat{MDI}=90^0+90^0=180^0\)
nên MCID là tứ giác nội tiếp đường tròn đường kính MI
=>MCID nội tiếp (K)
=>KC=KI
=>ΔKCI cân tại K
=>\(\widehat{KCI}=\widehat{KIC}\)
mà \(\widehat{KIC}=\widehat{MIC}=\widehat{CAB}\left(=90^0-\widehat{AMH}\right)\)
nên \(\widehat{KCI}=\widehat{CAB}\)
ΔOBC có OB=OC
nên ΔOBC cân tại O
=>\(\widehat{OCB}=\widehat{OBC}\)
\(\widehat{KCO}=\widehat{KCB}+\widehat{OCB}=\widehat{CAB}+\widehat{CBA}=90^0\)
Xét tứ giác KCOH có \(\widehat{KCO}+\widehat{KHO}=90^0+90^0=180^0\)
nên KCOH là tứ giác nội tiếp

Bài 2:
a: Xét (O) có
ΔCNM nội tiếp
CM là đường kính
Do đó: ΔCNM vuông tại N
=>CN\(\perp\)BN tại N
Xét tứ giác CNAB có \(\widehat{CNB}=\widehat{CAB}=90^0\)
nên CNAB là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{DNM};\widehat{DCM}\) là các góc nội tiếp cùng chắn cung DM
=>\(\widehat{DNM}=\widehat{DCM}\)
mà \(\widehat{DNM}=\widehat{ANB}=\widehat{ACB}\)(CNAB nội tiếp)
nên \(\widehat{DCA}=\widehat{BCA}\)
=>CA là phân giác của góc BCD
c: C,E,D,N cùng thuộc (O)
=>CEDN nội tiếp
=>\(\widehat{CED}+\widehat{CND}=180^0\)
mà \(\widehat{CND}+\widehat{CBA}=180^0\)(CNAB nội tiếp)
nên \(\widehat{CED}=\widehat{CBA}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//AB
=>ABED là hình thang

a: Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2=-2\)
=>\(a\cdot1=-2\)
=>a=-2
b: Khi a=-2 thì \(y=a\cdot x^2=-2x^2\)
Vẽ đồ thị:
c: Thay x=2 vào (P), ta được:
\(y=-2\cdot2^2=-8\)

a: Thay m=1 vào (1), ta được:
\(x^2-1\cdot x+1-3=0\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b: \(\text{Δ}=\left(-m\right)^2-4\left(m-3\right)\)
\(=m^2-4m+12\)
\(=m^2-4m+4+8=\left(m-2\right)^2+8>=8>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2=6\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=6\)
=>\(m^2-2\left(m-3\right)-6=0\)
=>\(m^2-2m=0\)
=>m(m-2)=0
=>\(\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

\(2x^2-3x+1=0\\ \Delta=b^2-4ac=\left(-3\right)^2-4\cdot2\cdot1=1>0\\ x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-3\right)-1}{2\cdot2}=0,5\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-3\right)+1}{2\cdot2}=1\\ \text{vậy phương trình có 2 nghiệm là }x_1=0,5;x_2=1\)
\(2x^2-3x+1=0\)
Ta có: \(\Delta=\left(-3\right)^2-4\cdot2\cdot1=1\left(>0\right)\)
Do \(\Delta>0\) nên phương trình có hai nghiệm phân biệt:
x1 = \(\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt1}{4}=\frac{3+1}{4}=1\)
x2 = \(\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt1}{4}=\frac{3-1}{4}=\frac24=\frac12\)

Câu a: Chứng minh tứ giác \(A E H F\) nội tiếp đường tròn
Bước 1: Chứng minh \(\angle A E F + \angle A H F = 180^{\circ}\)
- Vì \(B E\) và \(C F\) là các đường cao của tam giác \(A B C\), ta có: \(\angle A E B = 90^{\circ} \text{v} \overset{ˋ}{\text{a}} \angle A F C = 90^{\circ}\)
- \(H\) là trực tâm tam giác \(A B C\), nên \(H\) nằm trên cả ba đường cao.
- Xét tứ giác \(A E H F\), ta có: \(\angle A E F + \angle A H F = \angle A E B + \angle A F C = 90^{\circ} + 90^{\circ} = 180^{\circ}\)
- Tứ giác có tổng hai góc đối bằng \(180^{\circ}\), suy ra nó nội tiếp đường tròn.
Kết luận: Tứ giác \(A E H F\) nội tiếp.
Câu b: Chứng minh \(D I = D J\)
Bước 1: Sử dụng định nghĩa song song
- Qua \(D\), kẻ đường thẳng song song với \(B E\) cắt \(B E\) tại \(I\) và cắt \(A C\) tại \(J\).
- Vì \(D I \parallel B E\), ta có: \(\angle I D J = \angle E D B\) (hai góc so le trong).
Bước 2: Chứng minh \(D I = D J\)
- Xét tam giác \(D B E\), vì \(A D\) là đường cao nên \(D\) là trung điểm của \(B E\).
- Vì \(D I \parallel B E\) và \(D I\) cắt \(A C\), theo tính chất đường trung bình trong tam giác, ta có: \(D I = D J\) (do \(D I J\) là đoạn trung bình trong tam giác \(A B E\)).
Kết luận: \(D I = D J\).


Đây là một hệ phương trình tuyến tính hai ẩn. Dưới đây là cách giải hệ phương trình:
Phương pháp thế
- Giải phương trình thứ nhất để tìm y:
- 3x - y = 5
- -y = 5 - 3x
- y = 3x - 5
- Thay giá trị của y vào phương trình thứ hai:
- -x + 2y = 10
- -x + 2(3x - 5) = 10
- -x + 6x - 10 = 10
- 5x = 20
- x = 4
- Thay giá trị của x vào phương trình y = 3x - 5 để tìm y:
- y = 3(4) - 5
- y = 12 - 5
- y = 7
Vậy nghiệm của hệ phương trình là x = 4 và y = 7.
Phương pháp cộng đại số
- Nhân phương trình thứ hai với 3:
- 3(-x + 2y) = 3(10)
- -3x + 6y = 30
- Cộng phương trình mới với phương trình thứ nhất:
- (3x - y) + (-3x + 6y) = 5 + 30
- 5y = 35
- y = 7
- Thay giá trị của y vào một trong hai phương trình ban đầu để tìm x:
- 3x - 7 = 5
- 3x = 12
- x = 4
Vậy nghiệm của hệ phương trình là x = 4 và y = 7.
Kết luận
Hệ phương trình có nghiệm duy nhất là x = 4 và y = 7. Bạn có thể kiểm tra lại bằng cách thay x và y vào hai phương trình ban đầu, nếu cả 2 phương trình đều đúng thì kết quả là chính xác.