K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

A B C O H F E M N

a) từ đề bài ta có:

\(HE\perp AB,HF\perp AC\Rightarrow\widehat{AEH}+\widehat{AFH}=90^O+90^O=180^O\)

 \(\Rightarrow AEHF\)  nội tiếp

b) từ câu a\(\rightarrow\widehat{HFE}=\widehat{HAE}=\widehat{HAB}\)   

\(\Rightarrow\widehat{ABC}+\widehat{HFE}=\widehat{ABC}+\widehat{BAH}=90^O\) 

c)    Ta có : AEHF nội tiếp  

\(\Rightarrow\widehat{AEF}=\widehat{AHF}=\widehat{ACB}\left(+\widehat{FHC}=90^O\right)\)

→EFCB nội tiếp

\(\Rightarrow\widehat{BEC}=\widehat{BFC}\)

\(\Rightarrow\widehat{BEC}-90^O=\widehat{BFC}-90^O\)

\(\Rightarrow\widehat{HEC}=\widehat{HFB}\)

→EFNM nội tiếp

\(\Rightarrow\widehat{ENM}=\widehat{EFB}=\widehat{ECB}\)

\(\Rightarrow MN//BC\)

"... Có lẽ văn nghệ rất kị "trí thức hóa" nữa. Một nghệ thuật đã trí thức hóa thường là trừu tượng, khô héo. Nhưng văn nghệ nói nhiều nhất với cảm xúc, nơi đụng chạm của tâm hồn với cuộc sống hằng ngày. Vì văn nghệ không thể sống xa lìa cuộc sống và sống là gì, nếu không phải trước hết là hành động, là làm lụng, là cần lao...Tôn-xtôi vắn tắt:Nghệ thuật là tiếng nói...
Đọc tiếp

"... Có lẽ văn nghệ rất kị "trí thức hóa" nữa. Một nghệ thuật đã trí thức hóa thường là trừu tượng, khô héo. Nhưng văn nghệ nói nhiều nhất với cảm xúc, nơi đụng chạm của tâm hồn với cuộc sống hằng ngày. Vì văn nghệ không thể sống xa lìa cuộc sống và sống là gì, nếu không phải trước hết là hành động, là làm lụng, là cần lao...Tôn-xtôi vắn tắt:Nghệ thuật là tiếng nói của tình cảm ..."
a. Cho biết phương thức biểu đạt chính của đoạn văn trên
b. Xét về mục đích nói, câu văn:"Vì văn nghệ không thể sống xa lìa cuộc sống và sống là gì, nếu không phải trước hết là hành động, là làm lụng, là cần lao." thuộc loại câu nào ?
c. Phần sau dấu phẩy trong câu văn:" Nhưng văn nghệ nói nhiều nhất với cảm xúc, đụng chạm của tâm hồn với cuộc sống hàng ngày." thuộc thành phần nào của câu?

1
3 tháng 4 2020

a. Nghị luận

b. Câu nghi vấn.

c. Vị ngữ.

29 tháng 3 2020

Cộng 2 phương trình ta có 

\(x^3+y^3+\left(7xy+y-x\right)=\left(1+y-x+xy\right)+7\)

\(\Leftrightarrow x^3+y^3+6xy=8\)

\(\Rightarrow x^3+y^3+6xy-8=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2+4-xy+2y+2x\right)-6xy+6xy=0\)

\(\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2+4-xy+2y+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y-2\\x^2+y^2+4-xy+2y+2x=0\end{cases}}\)

nếu \(x+y=2=>x=y=1\)

nếu \(x^2+y^2+4-xy+2y+2x=0=>x=y=-2\left(zô\right)lý\)

zậy x=y=1

29 tháng 3 2020

+) đặt \(a=x+\frac{1}{y};b=y+\frac{1}{x}\)

=> \(ab=\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+\frac{1}{xy}+2=>xy+\frac{1}{xy}=ab-2\)

+) khi đó thay zô hệ phương trình ta đc

\(\hept{\begin{cases}a+b=\frac{9}{2}\\\frac{1}{4}+\frac{3}{2}a=ab-2\end{cases}\Rightarrow\hept{\begin{cases}2a+2b=9\\-4ab+6a+9=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}2b=9-2a\\-2a\left(9-2a\right)+6a+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}2b=9-2a\\4a^2-12a+9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2b=9-2a\\\left(2a-3\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{3}{2}\\b=3\end{cases}}}\)

+) trả zề biến x,y ta đc 

\(\hept{\begin{cases}x+\frac{1}{y}=\frac{3}{2}\\y+\frac{1}{x}=3\end{cases}\Leftrightarrow\hept{\begin{cases}xy-\frac{3}{2}y+1=0\\xy-3x+1=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(xy-\frac{3}{2}y+1\right)-\left(xy-3x+1\right)=0\\xy-3x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}y+3x=0\\xy-3x+1=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2x\\2x^2-3x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\2x^2-2x-x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2x\\\left(x-1\right)\left(2x-1=0\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}hoặc\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}}\)

+) thử lại ta thấy bộ số 

\(\left(1;2\right);\left(\frac{1}{2};1\right)\)thỏa mãn hệ phương trình

zậy hệ phương trình có tập nghiệm (x,y) thuộc (1,2) ;(1/2 ;1)

29 tháng 3 2020

đợi ăn cơm đã  tý làm cho

29 tháng 3 2020

Ta có : \(x+1-\sqrt{x+1}+\sqrt{1-x^2}=3.\sqrt{x+1}+\sqrt{1-x}\left(1\right)\)

ĐK : \(-1\le x\le1\)

Phương trình ( 1 ) được viết lại là : 

\(x+1-\sqrt{x+1}+\sqrt{1-x^2}-\sqrt{1-x}-2.\sqrt{x+1}+2=0\)

\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)+\sqrt{1-x}.\left(\sqrt{x+1}-1\right)-2.\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right).\left(\sqrt{x+1}+\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-1=0\\\sqrt{x+1}+\sqrt{1-x}-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1+2.\sqrt{x+1}.\sqrt{1-x}+1-x=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{1-x^2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\1-x^2=1\end{cases}}\)

\(\Leftrightarrow x=0\)

Vậy phương trình có nghiệm duy nhất là x = 0

29 tháng 3 2020

điều kiện \(-1\le x\le1\)

Phường trình trên đc ziết lại là

\(x+1-\sqrt{x+1}+\sqrt{1-x^2}-\sqrt{1-x}-2\sqrt{x+1}+2=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+1}-1\right)+\sqrt{1-x}\left(\sqrt{x+1}-1\right)-2\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)\left(\sqrt{x+1}+\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}-1=0\\\sqrt{x+1}+\sqrt{1-x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=1\\x+1+2\sqrt{x+1}.\sqrt{1-x}+1-x=4\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{1-x^2}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\1-x^2=1\end{cases}}}\)

=> x=0

zậy ...

29 tháng 3 2020

a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)

=> tứ giác AOMC nội tiếp đường tròn đường kính OC

tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)

=> tứ giác BOMD nội tiếp đường tròn đường kính OD

ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)

\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )

=>\(\widehat{OBM}=\widehat{AOC}\)

=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)

=>\(OC\perp OD\)(dpcm)

ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )

\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)

\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)

zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM

b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)

mà  tam giác DBM cân tại D ( t/c  2  tiếp tuyến cát nhau )

=> tam giác DBM đều (dpcm)

+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )

gọi S là diện tích cần tìm 

\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )

30 tháng 3 2020

cho mình xin hình ạ