Cho a,b,c\(\ne\)0 và \(a^3+b^3+c^3\)=3abc
Tính giá trị của biểu thức \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E
a)
Xét tam giác AMB có: MD là pg góc AMB
=> \(\frac{AD}{BD}=\frac{AM}{BM}\) ( 1 )
Xét tam giác AMC có: MD là pg góc AMC
=> \(\frac{AE}{CE}=\frac{AM}{CM}\)
Mà BM = CM
=> \(\frac{AE}{CE}=\frac{AM}{BM}\) ( 2 )
* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)
=> DE // BC. ( định lí Ta-lét đảo )
Vậy DE // BC.
b)
Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)
Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)
=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)
=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)
=> \(\frac{AD}{AB}=\frac{5}{8}\)
Xét tam giác ABC có: DE // BC
=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )
=> \(\frac{DE}{6}=\frac{5}{8}\)
=> DE = 3,75 ( cm ).
Vậy DE = 3,75 cm.
\(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=a^2+b^2+M\)
\(S_{ABCD}\)nhỏ nhất khi M nhỏ nhất
BĐT Cosi \(\left(S_{AOD}+S_{BOC}\right)^2\ge4\cdot S_{AOD}\cdot S_{BOC}\)
\(\Rightarrow\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}\cdot S_{BOC}\)(*)
Dấu "=" khi và chỉ khi SAOD=SBOC
Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao kẻ từ A => \(\frac{S_{AOB}}{S_{AOD}}=\frac{OB}{OD}\left(1\right)\)
Tương tự với \(\Delta COD\)và \(\Delta COB\)=> \(\frac{S_{COB}}{S_{COD}}=\frac{OB}{OD}\left(2\right)\)
Từ (1) và (2) => \(\frac{S_{AOB}}{S_{AOD}}=\frac{S_{COB}}{S_{COD}}\)
\(\Rightarrow S_{AOD}\cdot S_{BOC}=S_{AOB}\cdot S_{COD}=a^2b^2\)
Khi đó (*) => \(\left(\frac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\frac{S_{AOD}+S_{BOC}}{a}\ge2\left|a\right|\left|b\right|\)
\(\Rightarrow S_{ABCD}=a^2+b^2+M\ge a^2+b^2+2\left|a\right|\left|b\right|=\left(\left|a\right|+\left|b\right|\right)^2\)
Vậy SABCD nhỏ nhất =(|a|+|b|)2 <=> SAOD=SBOC
Gọi độ dài quãng đường AB là x ( km )( x > 0 )
Thời gian xe máy đi từ A đến B là : \(\frac{x}{30}\)( h )
Thời gian ô tô đii từ A đến B là : \(\frac{x}{60}\)( h )
Theo đề bài ô tô đến sớm hơn xe máy 1 h nên ta có phương trình :
\(\frac{x}{30}-\frac{x}{60}=1\)
\(\Leftrightarrow\frac{2x}{60}-\frac{x}{60}=\frac{60}{60}\)
\(\Leftrightarrow2x-x=60\)
\(\Leftrightarrow x=60\left(tmdk\right)\)
Vậy độ dài quãng đường AB là 60 km
Đây chỉ là ý kiến của mk thôi còn tùy bạn tham khảo nhe .
Gọi thời gian của xe máy: x ( giờ)
=> Thời gian của ô tô là x-1 (giờ)
s=v.t => s của xe máy = 30.x (km)
s của ô tô = 60 (1-x) (km)
2 xe cùng đi từ A đến B : 30x = 60(1-x)
=> x = 2 ( giờ )
Vậy quãng đường AB = 30.2 = 60 (km)
Gọi phân số cần tìm là \(\frac{a}{b}\)với a<b và ƯCLN (a;b)=1
Theo bài ra ta có phương trình \(\frac{a^3}{b+3}=\frac{3a}{b}\Leftrightarrow a^3=3a+\frac{9a}{b}\)
Vì \(\frac{a}{b}< 1\Rightarrow a^3< 3a+9\)
Đáp số \(\frac{a}{b}=\frac{2}{9}\)
Gọi chiều dài hcn là a, chiều rộng hcn là b (a,b>0)
Ta có: 2(a+b)=46 <=> a+b=23 (1)
(a+1)(b-1)=ab-6
<=> ab+b-a-1=ab-6
<=> b-a= -5 <=> a=b+5 (2)
Thay (2) vào (1) ta được: b+5+b = 23 <=> b=9 => a=14
Vậy diện tích hình chữ nhật ban đầu là: a.b = 9.14 = 126 (cm2)
Điều kiện \(x\ne2,4\)
\(\frac{x-3+2x-4}{x-2}=\frac{-2}{x-4}\)
\(\frac{3x-7}{x-2}=\frac{-2}{x-4}\)
\(-2x+4=3x^2-12x-7x+28\)
\(3x^2-17x+24=0\)
\(\left(x-3\right)\cdot\left(3x-8\right)=0\)
\(\orbr{\begin{cases}x=3\\x=\frac{3}{8}\end{cases}}\)
ĐK: x \(\ne\)-1; x \(\ne\)2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
<=> x2 - 4 + 3x + 3 = 3 + x2 - x - 2
<=> x2 + 3x - x2 + x = 1 + 1
<=> 4x = 2
<=> x = 1/2
Vậy S = {1/2}
Thay a3+b3=(a+b)3-3ab(a+b) vào giả thiết ta có:
(a+b)3-3ab(a+b)+c3-3abc=0
<=> [(a+b)+c].\(\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)-3ab(a+b+c)=0
<=> (a+b+c) (a2+b2+c2-ab-bc+c2-3ab)=0
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
\(\Rightarrow A=\frac{b+a}{b}\cdot\frac{c+b}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}\Rightarrow A=-1\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c
Khi đó \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)