K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\)\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\)\(\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Rightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=-\frac{1}{7}\Rightarrow-7\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Rightarrow35\sqrt{x}-14=\sqrt{x}+3\)

\(\Rightarrow34\sqrt{x}=17\)

\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy với \(x=\frac{1}{4}\)thì \(A=-\frac{1}{7}\)

6 tháng 9 2019

a) \(\sqrt{x}\)\(\sqrt{2x-1}\)

x < 2x - 1

x - 2x < -1

-x < -1

x > 1

b) \(\sqrt{x}\le\sqrt{x+1}\)

< x + 1

< 1

không có x tm

6 tháng 9 2019

ko k điểm ak :(((((((((((((((((((((((

6 tháng 9 2019

Ta có: \(\sqrt{7}< \sqrt{9}\)\(\sqrt{15}< \sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

x+2(2x-3)=4

x+4x-6=4

5x=4+6

5x=10

x=2

6 tháng 9 2019

Ta co:\(n^2+4n=k^2\)

\(\Leftrightarrow\left(n+2\right)^2-4=k^2\)

\(\Leftrightarrow\left(n+2\right)^2-k^2=4\)

\(\Leftrightarrow\left(n+k+2\right)\left(n-k+2\right)=4\)

Ma \(4=4.1=2.2\)

Suy ra:

\(\hept{\begin{cases}n+k+2=1\\n-k+2=4\end{cases}\left(1\right)}\)

\(\hept{\begin{cases}n+k+2=2\\n-k+2=2\end{cases}\left(2\right)}\)

Xet (1) ta duoc:

\(\hept{\begin{cases}n=1\\k=-2\end{cases}}\)

Thay vao thay khong thoa man nen loai

Xet (2) ta duoc:

\(\hept{\begin{cases}n=0\\k=0\end{cases}}\)

Thay vao thay thoa man nen nhan

Vay \(n=0\)thi \(n^2+4n\)la so chinh phuong

6 tháng 9 2019

Với n = 0 thì nó là số chính phương (chọn) 

Với n > 0 thì ta có\(n^2< n^2+4n< \left(n+2\right)^2\) 

\(\Rightarrow n^2+4n=\left(n+1\right)^2\)

\(\Leftrightarrow4n=2n+1\Leftrightarrow n=\frac{1}{2}\left(KTM\right)\)

Vậy n = 0 

P/s: Lâu ko làm dạng này nên ko chắc nha!

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia