K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2024

Hình đâu vậy bạn?

2 tháng 4 2024

Do f(2) = 6

⇒ 2² - 2b + 4 = 6

8 - 2b = 6

2b = 8 - 6

2b = 2

b = 2 : 2

b = 1

Vậy khi f(2) = 6 thì b = 1

Do f(2) = 6

⇒ 2² - 2b + 4 = 6

8 - 2b = 6

2b = 8 - 6

2b = 2

b = 2 : 2

b = 1

Vậy khi f(2) = 6 thì b = 1

2 tháng 4 2024

\(E=\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)

\(=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)

\(=-x^4-x^3+\left(-2x^2+5x^2\right)+\left(4x-x+x\right)+\left(2+1+5\right)\)

\(=-x^4-x^3+3x+4x+8\)

--------

\(G=\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)

\(=x^3+2x^2-7x-14-2x^2+28x+x-14+x^2-2x^2-22x+35\)

\(=x^3+\left(2x^2-2x^2+x^2-2x^2\right)+\left(-7x+28x+x-22x\right)+\left(-14-14+35\right)\)

\(=x^3-x^2+7\)

--------

\(D=\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(x+5\right)-6\left(3x-2\right)\)

\(=6x^2+21x-2x-7-x^2-5x-x-5-18x+12\)

\(=\left(6x^2-x^2\right)+\left(21x-2x-5x-x-18x\right)+\left(-7-5+12\right)\)

\(=5x^2-5x\)

\(E=\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\)

\(=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)

\(=-x^4-x^3+3x^2+4x+8\)

\(G=\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)

\(=x^3+2x^2-7x-14-\left(2x^2-28x-x+14\right)+x^3-2x^2-22x+35\)

\(=2x^3-29x+21-2x^2+29x-14\)

\(=2x^3-2x^2+7\)

\(D=\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(x+5\right)-6\left(3x-2\right)\)

\(=6x^2+21x-2x-7-\left(x^2+6x+5\right)-18x+12\)

\(=6x^2+x+12-x^2-6x-5=5x^2-5x+7\)

Gọi số lần xuất hiện mặt 4 chấm;5 chấm;6 chấm lần lượt là a(lần),b(lần),c(lần)

(Điều kiện: \(a,b,c\in Z^+\))

Số lần xuất hiện mặt 4 chấm bằng 2/3 lần số lần xuất hiện mặt 5 chấm

=>\(\dfrac{a}{2}=\dfrac{b}{3}\)

Số lần xuất hiện mặt 5 chấm bằng 60% số lần xuất hiện mặt 6 chấm

=>\(\dfrac{b}{3}=\dfrac{c}{5}\)

=>\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\)

Tổng số lần xuất hiện mặt 4 chấm;5 chấm; 6 chấm là:

a+b+c=100-15-17-18=50

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{50}{10}=5\)

=>\(a=2\cdot5=10;b=3\cdot5=15;c=5\cdot5=25\)

Do đó: số lần xuất hiện mặt 4 chấm;5 chấm;6 chấm lần lượt là 10 lần; 15 lần; 25 lần

Số lần số chấm xuất hiện là số lẻ là:

15+15+18=48(lần)

=>Xác suất thực nghiệm là \(\dfrac{48}{100}=\dfrac{12}{25}\)

2 tháng 4 2024

cứu

loading... 

1
2 tháng 4 2024

Ta có:

Q(x) = x² + 4x + 9

= x² + 2x + 2x + 4 + 5

= (x² + 2x) + (2x + 4) + 5

= x(x + 2) + 2(x + 2) + 5

= (x + 2)(x + 2) + 5

= (x + 2)² + 5

Do (x + 2)² ≥ 0 với mọi x ∈ R

⇒ (x + 2)² + 5 > 0 với mọi x ∈ R

Vậy Q(x) vô nghiệm

2 tháng 4 2024

Do 1 > 0

\(\left|x\right|\ge0\)

\(\Rightarrow1+\left|x\right|>0\)

Do đó \(1+\left|x\right|=-2\) là điều vô lý

\(\Rightarrow\) Không tìm được \(x\) trong trường hợp này

Vậy bài của em là sai

loading...  loading...  loading...  loading...  loading...  

DT
1 tháng 4 2024

a. M(x) =  x² + 2x – 3 + x² - 9x + 5

= 2x2 - 7x + 2

N(x) =  x² + 2x – 3 - x² + 9x - 5

= 11x - 8

loading... 

1
1 tháng 4 2024

\(A=x(x-1)-x+13\\=x^2-x-x+13\\=(x^2-2x+1)+12\\=(x-1)^2+12\)

Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+12\ge12\forall x\Rightarrow A\ge12\forall x\)

Dấu \("="\) xảy ra khi: \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_A=12\) tại \(x=1\).

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=k\)(k<>0)

=>\(\left\{{}\begin{matrix}d=a\cdot k\\c=d\cdot k=a\cdot k\cdot k=ak^2\\b=ck=ak^3\\a=bk=ak^4\end{matrix}\right.\)

\(a=ak^4\)

=>\(ak^4-a=0\)

=>\(a\left(k^4-1\right)=0\)

=>\(k^4-1=0\)

=>\(\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

\(M=\dfrac{3a+b}{5b-d}+\dfrac{2b+3c}{2d-b}\)

\(=\dfrac{3\cdot ak^4+ak^3}{5\cdot ak^3-ak}+\dfrac{2\cdot ak^3+3\cdot ak^2}{2\cdot ak-ak^3}\)

\(=\dfrac{ak^3\left(3k+1\right)}{ak\left(5k^2-1\right)}+\dfrac{ak^2\left(2k+3\right)}{ak\left(2-k^2\right)}\)

\(=\dfrac{k^2\left(3k+1\right)}{5k^2-1}+\dfrac{k\left(2k+3\right)}{2-k^2}\)

TH1: k=1

=>\(M=\dfrac{1^2\left(3\cdot1+1\right)}{5\cdot1^2-1}+\dfrac{1\left(2\cdot1+3\right)}{2-1^2}=\dfrac{4}{4}+\dfrac{5}{1}=6\)

TH2: k=-1

=>\(M=\dfrac{\left(-1\right)^2\cdot\left(-3+1\right)}{5\cdot\left(-1\right)^2-1}+\dfrac{\left(-1\right)\left(2\cdot\left(-1\right)+3\right)}{2-\left(-1\right)^2}\)

\(=\dfrac{-2}{4}+\dfrac{1}{1}=-\dfrac{1}{2}+1=\dfrac{1}{2}\)

1 tháng 4 2024

cíu tuii  

ghép câu thành có nghĩa: H/ồ/g/.../B/a/o/n