K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2024

\(A\left(x\right)=0\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow x-1=0\) hoặc \(x-3=0\)

\(\Rightarrow x=1\) hoặc \(x=3\)

Vậy đa thức đã cho có 2 nghiệm: \(x=1\)\(x=3\)

Đặt A(x)=0

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(x^3\left(x+2\right)-x\left(x^3+2^3\right)-2x\left(x^2-2^2\right)\)

\(=x^4+2x^3-x^4-8x-2x^3+8x\)

\(=0\)

 

5 tháng 4 2024

x3(x + 2) - x(x3 + 23- 2x(x2 - 22)

= x3.x + x3.2 + (-x).x3 + (-x).23 + (-2x).x2 + (-2x).(-22)

= x4 + 2x3 + (-x4) + (-x).8 + (-2x3) + (-2x).(-4)

= x4 + 2x3 - x4 + (-8x) - 2x3 + [(-2).(-4)]x

= x4 + 2x3 - x4 -8x - 2x3 + 8x

= (x4 - x4) + (2x3 - 2x3) + (-8x + 8x)

= 0.

5 tháng 4 2024

Em cần làm gì với biểu thức này. 

5 tháng 4 2024

a; 

A(\(x\)) = \(x^3\) - 4\(x\) + a - 3;  B(\(x\)) = \(x-2\)

Theo bezout ta có:

A(\(x\)) ⋮ B(\(x\)) ⇔ A(2) = 0

Thay \(x\) = 2 vào biểu thức A(\(x\)) = \(x^3\) - 4\(x\) + a - 3 = 0 ta có:

A(2) = 23 - 4.2 + a - 3 = 0

          8 - 8 + a  - 3  = 0

                     a - 3 = 0

                    a = 3

Vậy a = 3 thì A(\(x\)) ⋮ B(\(x\))

5 tháng 4 2024

Câu b; BB là như nào em nhỉ?

5 tháng 4 2024

7 × 8 = 56

5 tháng 4 2024

81 : 9 = 9

a: \(5x^2\left(2x^3-4x^2+3x-1\right)\)

\(=5x^2\cdot2x^3-5x^2\cdot4x^2+5x^2\cdot3x-5x^2\cdot1\)

\(=10x^5-20x^4+15x^3-5x^2\)

b: \(\left(x^2-3x\right)\left(x^2-2x-8\right)\)

\(=x^4-2x^3-8x^2-3x^3+6x^2+24x\)

\(=x^4-5x^3-2x^2+24x\)

c: \(1225x^7:\left(-25x^2\right)\)

\(=\left(-1225:25\right)\cdot\left(x^7:x^2\right)\)

\(=-49x^5\)

d: \(\left(-10x^3+25x^2-8x\right):\left(-5x\right)\)

\(=\dfrac{10x^3}{5x}-\dfrac{25x^2}{5x}+\dfrac{8x}{5x}\)

\(=2x^2-5x+\dfrac{8}{5}\)

e: \(\left(3x^4-8x^3+11x^2+8x-5\right):\left(3x^2-2x+3\right)\)

\(=\dfrac{3x^4-2x^3+3x^2-6x^3+4x^2-6x+4x^2-\dfrac{8}{3}x+4+\dfrac{50}{3}x-9}{3x^2-2x+3}\)

\(=x^2-2x+\dfrac{4}{3}+\dfrac{\dfrac{50}{3}x-9}{3x^2-2x+3}\)

5 tháng 4 2024

\(-2x^4+3x^5+x^3+4x+14x^4-6x^5-x^3+x+10\)

\(=\left(3x^5-6x^5\right)+\left(-2x^4+14x^4\right)+\left(x^3-x^3\right)+\left(4x+x\right)+10\)

\(=-3x^5+12x^4+5x+10\)

`#NqHahh`

5 tháng 4 2024

-2x⁴ + 3x⁵ + x³ + 4x + 14x⁴ - 6x⁵ - x³ + x + 10

= (3x⁵ - 6x⁵) + (-2x⁴ + 14x⁴) + (x³ - x³) + (4x + x) + 10

= -3x⁵ + 12x⁴ + 5x + 10

6 tháng 4 2024

Chứng minh tam giác là tam giác cân, ta có thể chứng minh:

- Tam giác có hai cạnh bằng nhau.

- Tam giác có hai góc bằng nhau.

- Tam giác có hai trong bốn đường: đường trung tuyến, đường trung trực, đường cao, đường phân giác cùng xuất phát từ một đỉnh.