K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(10A=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)

\(10B=\dfrac{10^{10}+10}{10^{10}+1}=1+\dfrac{9}{10^{10}+1}\)

\(10^{11}+1>10^{10}+1\)

=>\(\dfrac{9}{10^{11}+1}< \dfrac{9}{10^{10}+1}\)

=>\(\dfrac{9}{10^{11}+1}+1< \dfrac{9}{10^{10}+1}+1\)

=>10A<10B

=>A<B

11 tháng 5 2024

A = \(\dfrac{10^{10}+1}{10^{11}+1}\) < \(\dfrac{10^{10}+1+9}{10^{11}+1+9}\) = \(\dfrac{10^{10}+10}{10^{11}+10}\) = \(\dfrac{10.\left(10^9+1\right)}{10.\left(10^{10}+1\right)}\) = B

Vậy A < B

\(M=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{n\left(n+4\right)}\)

\(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{n\left(n+4\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{n+4}\right)=\dfrac{1}{4}\cdot\dfrac{n+4-1}{n+4}=\dfrac{n+3}{4\left(n+4\right)}\)

11 tháng 5 2024

\(\dfrac{2}{3}\) + \(x+\dfrac{1}{4}\)\(x\) = - \(\dfrac{22}{27}\)

       \(x+\dfrac{1}{4}x\) = - \(\dfrac{22}{27}\) - \(\dfrac{2}{3}\)

        \(\dfrac{5}{4}x\)      = - \(\dfrac{40}{27}\)

            \(x=-\dfrac{40}{27}:\dfrac{5}{4}\)

            \(x=-\dfrac{32}{27}\)

Vậy \(x=-\dfrac{32}{27}\)

11 tháng 5 2024

Đặt A = 2 + 2² + 2³ + ... + 2²⁰

2A = 2² + 2³ + 2⁴ + ... + 2²¹

A = 2A - A

= (2² + 2³ + 2⁴ + ... + 2²¹) - (2 + 2² + 2² + ... + 2²⁰)

= 2²¹ - 2

= 2097150

11 tháng 5 2024

   A = 2 + 22 + 23 + ... + 220

2.A =2.(2 + 22 + 23 + ... + 220)

2A = 22 + 23 + 24 + ... + 221

2A - A = 22 + 23 + 24 + ... + 221 - (2 + 22 + 23 + ... + 220)

A = 22 + 23 + 24 + ... + 221 - 2 - 22 - ... - 220

A = (22 - 22) + (23 - 23) + ... + (221 - 2)

A = 0 + 0 + ... + 0 + 221 - 2

A = 221 - 2

11 tháng 5 2024

(\(\dfrac{1}{5}\) + 2\(x\)).(3 - 2\(x\)) = 0

\(\left[{}\begin{matrix}\dfrac{1}{5}+2x=0\\3-2x=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x=-\dfrac{1}{5}\\2x=3\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-1}{5}:2\\x=\dfrac{3}{2}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\){ - \(\dfrac{1}{10}\)\(\dfrac{3}{2}\)}

 

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{99^2}< \dfrac{1}{98\cdot99}=\dfrac{1}{98}-\dfrac{1}{99}\)

Do đó: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

=>\(S< 1-\dfrac{1}{99}\)

=>S<1

\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{99^2}>\dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(S>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(S>\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

Do đó: \(\dfrac{49}{100}< S< 1\)

c: \(\dfrac{5\cdot4^6\cdot9^4-3^9\cdot\left(-8\right)^4}{4\cdot2^{13}\cdot3^8+2\cdot8^4\cdot\left(-27\right)^3}\)

\(=\dfrac{5\cdot2^{12}\cdot3^8-3^9\cdot2^{12}}{2^{15}\cdot3^8-2^{13}\cdot3^9}\)

\(=\dfrac{2^{12}\cdot3^8\left(5-3\right)}{2^{13}\cdot3^8\left(2^2-3\right)}=\dfrac{2^{13}}{2^{13}}=1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{55^2}< \dfrac{1}{54\cdot55}=\dfrac{1}{54}-\dfrac{1}{55}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{55^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{54}-\dfrac{1}{55}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{55^2}< 1\)

=>\(\dfrac{4}{2^2}+\dfrac{4}{3^2}+...+\dfrac{4}{55^2}< 4\)

\(\dfrac{x-1}{4}=\dfrac{2}{x}\)

=>\(x\left(x-1\right)=2\cdot4\)

=>\(x^2-x-8=0\)(1)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-8\right)=1+32=33>0\)

Do đó: Phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{33}}{2}\\x_2=\dfrac{1+\sqrt{33}}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
11 tháng 5 2024

Lời giải:
\(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\\ 3S=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\\ \Rightarrow S+3S=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow 4S+\frac{100}{3^{100}}=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{99}}\)

\(3(4S+\frac{100}{3^{100}})=3-1+\frac{1}{3}-\frac{1}{3^2}+....-\frac{1}{3^{98}}\)

\(\Rightarrow 4(4S+\frac{100}{3^{100}})=3-\frac{1}{3^{99}}\)

\(S=\frac{3}{16}-\frac{1}{16.3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}< \frac{1}{5}\)