Tìm m ? để phương trình (m-4)x2-2(m-2)x +m+1= 0 . Có 2 nghiệm trái dấu và giá trị tuyệt đối của nghiệm âm lớn hơn giá trị tuyệt đối của nghiệm dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\sqrt{12-2x^2}=4+y\\\sqrt{1-2y-y^2}=5-2x\end{cases}}\)(ĐK: \(\hept{\begin{cases}12-2x^2\ge0\\1-2y-y^2\ge0\end{cases}}\))
\(\Rightarrow\hept{\begin{cases}12-2x^2=\left(4+y\right)^2\\1-2y-y^2=\left(5-2x\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2+2x^2+8y+4=0\\4x^2+y^2-20x+2y+24=0\end{cases}}\)
\(\Rightarrow2\left(4x^2+y^2-20x+2y+24\right)+\left(y^2+2x^2+8y+4\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-y-4\right)^2+8\left(x-2\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\end{cases}}\)
Thử lại thỏa mãn.
Ta có |x + 3| + |7 - x| \(\ge\left|x+3+7-x\right|=\left|10\right|=10\)
Dấu "=" xảy ra <=> \(\left(x+3\right)\left(7-x\right)\ge0\)
Xét các trường hợp
TH1 : \(\hept{\begin{cases}x+3\ge0\\7-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x\le7\end{cases}}\Rightarrow-3\le x\le7\)(tm)
TH2 \(\hept{\begin{cases}x+3\le0\\7-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x\ge7\end{cases}}\left(\text{loại}\right)\)
Vậy \(-3\le x\le7\)là giá trị cần tìm
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)(ĐK: \(0\le x\le9\))
\(\Leftrightarrow x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow4x\left(9-x\right)=x^2\left(9-x\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(9-x\right)=0\\x\left(9-x\right)=4\end{cases}}\)
- \(x\left(9-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=9\end{cases}}\).
- \(x\left(9-x\right)=4\Leftrightarrow\orbr{\begin{cases}x=\frac{9+\sqrt{65}}{2}\\x=\frac{9-\sqrt{65}}{2}\end{cases}}\)
ĐKXĐ: \(X\ge1\)
<=> \(\left(\sqrt{x+1}-\sqrt{x-1}=1\right)^2=1\) ( dựa vào điều kiện trên)
<=> \(X+1-2\sqrt{X^2-1}+X-1=1\)
<=>\(\left(2\sqrt{X^2-1}\right)^2=\left(2X-1\right)^2\)
<=>\(4X^2-4=4X^2-4X+1\)
<=> X= \(\frac{-5}{4}\)( K/TM)
Vậy phương trình vô nghiệm
2<m<4