K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Em chỉ biết cộng trừ sương sương nên ko chắc lắm :) 

\(\hept{\begin{cases}2x^2-5xy+2y^2-x+2y=0\\x^2+3xy+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2-2xy+2y^2+2y=0\\x^2+3xy+x=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}9x^2-6xy+6y^2+2y=0\\2x^2+6xy+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}11x^2+6y^2+2y=0\\2x^2+6xy+x=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}22x^2+12y^2+4y=0\\22x^2+66xy+11x=0\end{cases}\Leftrightarrow\hept{\begin{cases}12y^2+4y=0\\66xy+11x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}12y^2=-4y\\-66xy-11x=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0;\frac{1}{3}\left(1\right)\\-66xy-11x=0\left(2\right)\end{cases}}\) TH1 : Thay y = 0 vào 2 ta đc :

\(-66x.0-11x=0\Leftrightarrow-11x=0\Leftrightarrow x=0\)

TH2 : Thay y = 1/3 vào 2 ta đc : 

\(-66x.\frac{1}{3}-11x=0\Leftrightarrow\frac{-66x}{3}-\frac{33x}{3}=0\) Khử mẫu ta đc :

\(-66x-33=0\Leftrightarrow x=-\frac{1}{2}\)

26 tháng 11 2020

Bạn xem lời giải ở đây

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

11 tháng 7 2020

ĐKXĐ: \(x\ne\frac{1}{2};x\ne-\frac{2}{3}\)

\(\frac{3}{2x-1}=\frac{5}{3x+2}\)

\(\Rightarrow3\left(3x+2\right)=5\left(2x-1\right)\)

\(\Leftrightarrow9x+6=10x-5\)

\(\Leftrightarrow-x=-11\)

\(\Leftrightarrow x=11\left(TM\right)\)

Vậy x = 11

11 tháng 7 2020

\(\frac{3}{2x-1}=\frac{5}{3x+2}\left(đkxđ:x\ne\frac{1}{2};x\ne-\frac{2}{3}\right)\)

\(\Leftrightarrow\frac{3\left(3x+2\right)}{\left(2x-1\right)\left(3x+2\right)}=\frac{5\left(2x-1\right)}{\left(2x-1\right)\left(3x+2\right)}\)

\(\Leftrightarrow3\left(3x+2\right)=5\left(2x-1\right)\)

\(\Leftrightarrow9x+6=10x-5\)

\(\Leftrightarrow9x-10x=-5-6\)

\(\Leftrightarrow-x=-11\)

\(\Leftrightarrow x=11\)

11 tháng 7 2020

để mọi căn thức trên có nghĩa thì

\(\sqrt{x^2+1}\ge0< =>x^2+1>0\left(đúng\right)\)

\(\sqrt{x^2+2}\ge0< =>x^2+2>0\left(đúng\right)\)

\(\sqrt{x^2+3}\ge0< =>x^2+3>0\left(đúng\right)\)

\(\sqrt{x^2+30}\ge0< =>x^2+30>0\left(đúng\right)\)

Vậy để căn thức trên có nghĩa với mọi x

\(\sqrt{x^2+40}\ge0< =>x^2+40>0\left(đúng\right)\)

11 tháng 7 2020

Bài làm:

+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)

Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)

+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)

\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)

Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)

+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)

\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Học tốt!!!!

11 tháng 7 2020

cuc cuc ai bi con cac

18 tháng 7 2020

sorry em lp 6 nen ko hieu