cho a,b>0(t/m)a+b<=1/2 tìm min 1/(a^2+b^2)+2/(ab)+ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-4x^2-8x+8=\left(x^2-6x+4\right)\left(x+2\right)\)
Hc tốt
Trả lời:
\(x^3-4x^2-8x+8\)
\(=x^3+2x^2-6x^2-12x+4x+8\)
\(=x^2.\left(x+2\right)-6x.\left(x+2\right)+4.\left(x+2\right)\)
\(=\left(x+2\right).\left(x^2-6x+4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trả lời:
\(\left(x+2y-3\right)-4.\left(x+2y-3\right)+4\)
\(=\left(x+2y-3-2\right)^2\)
\(=\left(x+2y-5\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Ta có: \(\frac{x-1}{3}+\frac{x-3}{4}=2\)
\(\Leftrightarrow\left(\frac{x}{3}+\frac{x}{4}\right)=2+\frac{1}{3}+\frac{3}{4}\)
\(\Leftrightarrow\frac{7}{12}x=\frac{37}{12}\)
\(\Leftrightarrow x=\frac{37}{12}\div\frac{7}{12}\)
\(\Rightarrow x=\frac{37}{7}\)
\(\frac{x-1}{3}+\frac{x-3}{4}=2\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{12}+\frac{3\left(x-3\right)}{12}=\frac{24}{12}\)
\(\Leftrightarrow4\left(x-1\right)+3\left(x-3\right)=24\)
\(\Leftrightarrow4x-4+3x-9=24\)
\(\Leftrightarrow7x-13=24\)
\(\Leftrightarrow7x=37\)
\(\Leftrightarrow x=\frac{37}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Ta có: \(x=-9\Leftrightarrow-10=x-1\Rightarrow10=1-x\)nên thay vào ta tính:
\(P\left(-9\right)=1+\left(1-x\right)x+\left(1-x\right)x^2+\left(1-x\right)x^3+...+\left(1-x\right)x^{19}+\left(1-x\right)x^{20}\)
\(P\left(-9\right)=1+x-x^2+x^2-x^3+x^3-x^4+...+x^{20}-x^{21}\)
\(P\left(-9\right)=1+x-x^{21}\)
\(P\left(-9\right)=1-9+9^{21}\)
\(P\left(-9\right)=9^{21}-8\)
Vậy khi \(x=-9\)thì \(P\left(x\right)=9^{21}-8\)
Học tốt!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, de phuong trinh tren co nghia thi \(3x-9\ge0\)
\(3x\ge9< =>x\ge3\)
b, de phuong trinh tren co nghia thi \(5-10x\ge0\)
\(< =>10x\le5\)\(< =>x\le\frac{1}{2}\)
c, de phuong trinh tren co nghia thi \(\frac{3}{2x+1}\ge0\)(DK: x khac -1/2)
\(< =>2x+1\ge0\)\(< =>x>-\frac{1}{2}\)
d, de phuong trinh tren co nghia thi \(\frac{2x-4}{3}\ge0\)
\(< =>2x-4\ge0\)\(< =>x\ge2\)
e, de phuong trinh tren co nghia thi \(\frac{x^2}{2x-3}\)
do \(x^2\ge\)suy ra \(2x-3\ge0\)
\(< =>2x\ge3\)\(< =>x\ge\frac{3}{2}\)
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{16}\)
Ta có: \(\frac{1}{a^2+b^2}+\frac{2}{ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{3}{2ab}+384ab-383ab\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{3}{2ab}.384ab}-383.\frac{1}{16}\)
\(=\frac{4}{\left(a+b\right)^2}+2.24-\frac{383}{16}=\frac{641}{16}\)
Dấu "=" xảy ra <=> a = b = 1/4