cho biểu thức A=\(\frac{2x-12}{x^2-5x+6}-\frac{x+3}{x-2}+\frac{2x}{x-3}\)[\(x\ne2,x\ne3\)]
a, rút gọn A
b,tính giá trị của A khi x=5
c,tìm x thuộc Zđể A thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm1\)
\(Q=\frac{1}{2x-2}+\frac{1}{2x+2}+\frac{x^2}{1-x^2}\)
\(\Leftrightarrow Q=\frac{1}{2\left(x-1\right)}+\frac{1}{2\left(x+1\right)}-\frac{x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow Q=\frac{x+1+x-1-2x^2}{2\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow Q=\frac{-2x^2+2x}{2\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow Q=\frac{-1}{x+1}\)
b) Khi \(\left|x+1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-3\left(tm\right)\end{cases}}\)
Thay \(x=-3\)vào Q ta được :
\(Q=\frac{-1}{-3+1}=\frac{1}{2}\)
c) Để \(Q\)có giá trị nguyên \(\Leftrightarrow-1⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-2;0\right\}\)
Vậy để Q có giá trị nguyên \(\Leftrightarrow x\in\left\{-2;0\right\}\)
c) Bạn lấy mỗi giá trị nguyên nhỏ nhất của x = -2 thôi nhé !
Xin lỗi vì đọc nhầm đề
T(x) = f(x) + g(x) = 5x2 - 2x + 3 (1)
H(x) = f(x) - g(X) = x2 - 2x + 5 (2)
Lấy (1) cộng (2) theo vế ta có
f(x) + g(x) + f(x) - g(x) = 5x2 - 2x + 3 + x2 - 2x + 5
=> 2.f(x) = 6x2 - 4x + 8
=> f(x) = 3x2 - 2x + 4
Thay f(x) vào (1) ta có
f(x) + g(x) = 5x2 - 2x + 3
=> (3x2 - 2x + 4) + g(x) = 5x2 - 2x + 3
=> g(x) = 5x2 - 2x + 3 - 3x2 + 2x - 4
=> g(x) = 2x2 - 1
Vậy f(x) = 3x2 - 2x + 4 ; g(x) = 2x2 - 1
a) \(ĐKXĐ:x\ne\pm2\)
\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)
\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)
\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)
\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(\Leftrightarrow P=\frac{x+2}{x-2}\)
b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)
Loại \(x=-2\)
\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)
Vì P là số nguyên tố nên
\(P\in\left\{5;3;2\right\}\)
Vậy để P là số nguyên tố thì \(x\in\left\{3;4;6\right\}\)
B A C D M F G
P/s: Đề sai phải sửa thành chứng minh BF = CG
Bài làm:
Ta có: Vì AD // FM
=> \(\frac{AB}{BF}=\frac{BD}{BM}\left(1\right)\)
Vì GM // AD
=> \(\frac{CG}{AC}=\frac{CM}{DC}\left(2\right)\)
Nhân vế (1) và (2) với nhau ta được:
\(\frac{AB}{BF}.\frac{CG}{AC}=\frac{BD}{BM}.\frac{CM}{DC}\left(3\right)\)
Mà M là trung điểm của BC => BM = CM (4)
Lại có AD là phân giác của tam giác ABC và D thuộc BC
=> \(\frac{BD}{DC}=\frac{AB}{AC}\left(5\right)\)
Kết hợp (3) với (4) và (5) ta được:
\(\frac{AB}{AC}.\frac{CG}{BF}=\frac{BD}{DC}.\frac{CM}{BM}\Leftrightarrow\frac{AB}{AC}.\frac{CG}{BF}=\frac{AB}{AC}\Leftrightarrow\frac{CG}{BF}=1\)
\(\Rightarrow CG=BF\)
ĐKXĐ: x \(\ne\)\(\pm\)3; x \(\ne\)-7
a) Ta có: P = \(\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\)
P = \(\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\frac{2x+10-x-3}{x+3}\right)\)
P = \(\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}:\frac{x+7}{x+3}\)
P = \(\frac{-2x-14}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
P = \(\frac{-2\left(x+7\right)}{x-3}\cdot\frac{1}{x+7}=-\frac{2}{x-3}\)
b) Với x \(\ne\)\(\pm\)3 và x \(\ne\)-7
Ta có: x - 1 = 2 <=> x = 3 (ktm)
=> ko tồn tại giá trị P khi x - 1 = 2
c) Với x \(\ne\)\(\pm\)3; và x \(\ne\)-7
Ta có: P = \(\frac{x+5}{6}\)
<=> \(-\frac{2}{x-3}=\frac{x+5}{6}\)
=> (x - 3)(x + 5) = -12
<=> x2 + 2x - 15 = -12
<=> x2 + 2x - 3 = 0
<=> x2 + 3x - x - 3 = 0
<=> (x - 1)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy ...
a) \(P=\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\left(x\ne\pm3\right)\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x}{x+3}-\frac{5}{x-3}\right):\frac{2x+10-x-3}{x+3}\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x+15}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+7}{x+3}\)
\(=\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
\(=\frac{\left(-2x-14\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}\)
\(=\frac{-2\left(x+7\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}=-\frac{2}{x-3}\)
vậy \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
b) ta có \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
có x-1=2
<=> x=3 (không thỏa mãn điều kiện)
vậy không có giá trị P để x-1=2
c) ta có: \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
P=\(\frac{x+5}{6}\)=> \(\frac{-2}{x-3}=\frac{x+5}{6}\)
\(\Leftrightarrow x^2+2x-15=-12\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
đối chiếu điều kiện ta thấy x=1 thỏa mãn điều kiện
vậy \(P=\frac{x+5}{6}\)đạt được khi x=1
A B C D M N E F G H Bài làm:
a) Ta có: N,E lần lượt là trung điểm của DC,MC
=> NE là đường trung bình của tam giác MCD
=> NE // DM // FM và \(NE=\frac{1}{2}DM=FM\)
=> Tứ giác MENF là hình bình hành (dấu hiệu nhận biết 2 cạnh // và bằng nhau)
b) CM ý hệt phần a không khác tí nào:
Vì M,G lần lượt là trung điểm của AB,AN
=> MG là đường trung bình của tam giác ABN
=> MG // BN // HN và \(MG=\frac{1}{2}BN=HN\)
=> Tứ giác MHNG là hình bình hành
c) Theo phần a và b, các tứ giác MENF và MHNG là các hình bình hành
=> MN cắt GH và FE tại trung điểm mỗi đường (tính chất đường chéo của hình bình hành)
=> EF,GH,MN đồng quy
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-12}{x^2-5x+6}-\frac{x+3}{x-2}+\frac{2x}{x-3}\)
\(\Leftrightarrow A=\frac{2x-12-x^2+9+2x^2-4x}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x^2-2x-3}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{\left(x-3\right)\left(x+1\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-2}\)
b) Thay \(x=5\)vào A ta được :
\(A=\frac{5+1}{5-2}=2\)
c) Để \(A\inℤ\)
\(\Leftrightarrow x+1⋮x-2\)
\(\Leftrightarrow3⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{1;3;-1;5\right\}\)
Vì \(x\ne3\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{1;-1;5\right\}\)
Bạn xem lại đề !