Các bạn giỏi toán hộ mk bài này cái :
Cho x , y > 0 ; thỏa mãn x + y = 1 .
\(\text{Tìm Min(A) }=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)
VT = a3 + b3 + c3 - 3abc = (a + b)(a2 - ab + b2) + c3 - 3abc
= (a + b)(a2 + 2ab + b2 - 3ab) + c3 - 3abc
= (a + b)3 - 3ab(a + b) + c3 - 3abc
= (a + b+ c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b+ c)
= (a + b + c))(a2 + 2ab + b2 - ac - bc + c2 - 3abc)
= (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = VP
=> ĐPCM
Sửa đề :
VP= (a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-ca2+ba2+b3+bc2-ab2-b2c-abc+ca2+cb2+c3-abc-bc2-c2a
=a3+b3+c3-3abc
Cách này đỡ phức tạp hơn cách của edogawa conan
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
Bài làm:
a) \(x^2-6x+4=\left(x^2-6x+9\right)-5=\left(x-3\right)^2-\left(\sqrt{5}\right)^2\)
\(=\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=\left(x-1\right)\left(x-3\right)\)
c) \(6x^2-5x+1=6x^2-3x-2x+1=\left(2x-1\right)\left(3x-1\right)\)
d) \(3x^2+13x-10=3x^2+15x-2x-10=\left(x-5\right)\left(3x-2\right)\)
Ta có: xy = 3 (1)
x + 2y = 7 <=> x = 7 - 2y (2)
Thay (2) vào (1) => (7 - 2y)y = 3
<=> -2y2 + 7y = 3
<=> 2y2 - 7y + 3 = 0
<=> 2y2 - 6y - y + 3 = 0
<=> (2y - 1)(y - 3) = 0
<=> \(\orbr{\begin{cases}2y-1=0\\y-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}y=\frac{1}{2}\\y=3\end{cases}}\)
Với y = 1/2 => x = 7 - 2.1/2 = 7 (tm vì x = 7 > 2y = 1/2.2 = 1)
Với y = 3=> x = 7 - 2.3/2 = 4 (ktm: vì 2y = 6; x < 2y)
Khi đó: x5 - 32y5 = 75 - 32. (1/2)5 = 16806
Bài làm:
Ta có: \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự ta CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)
Cộng vế 3 BĐT trên ta được:
\(VP\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\)
\(=\frac{1}{2}.\frac{ab+b+1}{ab+b+1}=\frac{1}{2}.1=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
p/s : đéo biết làm thì câm mẹ mồm lại , loại súc vật như bạn ý thì cút khỏi olm cho sạch ạ !
Theo Cauchy ta dễ có : \(b^2+1\ge2\sqrt{b^2}=2b\)
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Khi đó : \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2+2b+2ab}=\frac{1}{2\left(ab+b+1\right)}\)
Bằng cách chứng minh tương tự rồi cộng theo vế các bđt cùng chiều thì ta được :
\(VT\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}=\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{ac}{abc.c+abc+ac}+\frac{a}{abc+ca+1}+\frac{1}{ca+a+1}=1\)
Từ đó ta thu được \(VT\le\frac{1}{2}.1=\frac{1}{2}\)hay \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le1\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Vậy ta có điều phải chứng minh
P/s: Ko chắc lắm.
\(A=x^3+y^3+6xy-3x-3y+1\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x+y\right)+6xy+1\)
\(A=\left(x+y\right)\left(x^2+2xy+y^2-2xy-xy\right)-3\left(x+y\right)+6xy+1\)
\(A=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left(x+y\right)+6xy+1\)
\(A=\left(x+y\right)\left[\left(x+y\right)^2-3xy-3\right]+6xy+1\)
Thay x+y=2 vào biểu thức, ta có:
\(A=2\left(2^2-3xy-3\right)+6xy+1\)
\(A=2\left(1-3xy\right)+6xy+1\)
\(A=2-6xy+6xy+1\)
\(A=3\)
\(B=x^2-y^2+4y+1\)
\(B=\left(x-y\right)\left(x+y\right)+4y+1\)
\(B=2\left(x-y\right)+4y+1\)
\(B=2x-2y+4y+1\)
\(B=2x+2y+1\)
\(B=2\left(x+y\right)+1=2.2+1=5\)
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)