cho 2 phương trình \(f\left(x\right)=2x^2-4x+5\) và \(g\left(x\right)=x^2+ax+b\). Tìm tất cả các giá trị của a,b biết GTNN của g(x) nhỏ hơn GTNN của f(x) là 8 đơn vị và đồ thị của hàm số trên có đúng 1 điểm chung
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ phương trình:
\(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x-y}=\frac{y}{2}\\x^2-y^2=9\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x+y}=a\\\sqrt{x-y}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=2x\\a^2b^2=x^2-y^2=9\end{cases}}}\)
Do đó ab = 3 hoặc ab = -3
TH1: ab = 3
Ta có: \(\left(a-b\right)^2=a^2+b^2-2ab\Rightarrow\left(\frac{y}{2}\right)^2=2x-6\Rightarrow y^2=8x-24\)
Mà \(x^2-y^2=9\Rightarrow x^2-\left(8x-24\right)=9\Rightarrow\orbr{\begin{cases}x=3\Rightarrow y=0\\x=5\Rightarrow y=\pm4\end{cases}}\)
TH2: ab = -3
\(\left(a-b\right)^2=a^2+b^2-2ab\Rightarrow\left(\frac{y}{2}\right)^2=2x-2.\left(-3\right)\Rightarrow y^2=8x+24\)
Mà \(x^2-y^2=9\Rightarrow....\) (bạn tự làm tiếp nhé)
Bài toán hay đấy
Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)
Ko mất tính tổng quát, giả sử \(x_1=3x_2\)
Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)
Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)
\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)
Vậy ko tồn tại m thỏa mãn
đồ thị hai hàm parabol có một điểm chung khi chúng có chung đỉnh
hay đỉnh I(1,3) của f(x) cũng là đỉnh của g(x)
dẫn đến giá trị nhỏ nhất của hai hàm là bằng nhau.
thế nên bài này sai ngay từ đề bài rồi nhé
hay nói cách khác , không tồn tại hai số a b thỏa mãn điều kiện trên