2x(x-y)-y(y-2) với x=-1/3 ; y=-2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha :
a, Tứ giác AMHN có : \(\widehat{A}=\widehat{M}=\widehat{N}=90^o\)
\(\Rightarrow\) Tứ giác AMHN là hình chữ nhật
b, \(\Delta ABC:\) \(\widehat{A}=90^o\)
\(\Rightarrow\) \(BC^2=AB^2+AC^2\) ( Định lý Py - ta - go )
hay \(BC^2=8^2+15^2=289\)
\(\Rightarrow\) BC = 17 ( cm )
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{B}:chung\)
\(\Rightarrow\) \(\Delta AHB\) đồng dạng \(\Delta CAB\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AH}{AB}=\frac{AC}{BC}\) \(\Rightarrow\) \(AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\left(cm\right)\)
Mà AMHN là hình chữ nhật
=> \(MN=AH=\frac{120}{17}\left(cm\right)\)
c, Xét \(\Delta AMH\) và \(\Delta AHB\) có :
\(\widehat{A}:chung\)
\(\widehat{AMH}=\widehat{AHB}=90^o\)
\(\Rightarrow\) \(\Delta AMH\) đồng dạng \(\Delta AHB\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AM}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AM.AB=AH^2\) ( 1 )
Tương tự : \(\Delta ANH\) đồng dạng \(\Delta AHC\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AN}{AH}=\frac{AH}{AC}\) \(\Rightarrow\) \(AN.AC=AH^2\) ( 2 )
Từ ( 1 ) và ( 2 ) => đpcm
Ta có:\(\hept{\begin{cases}\widehat{DAB}+\widehat{DCB}=360^0-90^0-90^0=180^0\\\widehat{ECB}+\widehat{DCB}=180^0\end{cases}\Rightarrow\widehat{DAB}=\widehat{ECB}}\)
Xét tam giác DAB và tam giác ECB có
\(\hept{\begin{cases}DA=EC\\\widehat{DAB}=\widehat{ECB}\\AB=BC\end{cases}}\)
Suy ra tam giác DAB = tam giác ECB(c.g.c)
Suy ra DB=EB
Suy ra tam giác BED cân tại B(đpcm)
do em năm nay lên lớp 8 nên trình bày hơi ngáo nha
a)Xét tam giác ABG và tam giác HBK có:
\(\hept{\begin{cases}\widehat{GAB}=\widehat{KHB}\\\widehat{ABG}=\widehat{HBK}\end{cases}}\)(theo giả thuyết)
Suy ra tam giác ABG đồng dạng tam giác HBK(g.g)(đpcm)
b)\(BC=\sqrt{AC^2+AB^2}=\sqrt{15^2+20^2}=25cm\)
\(S_{\Delta ABC}=2.AB.AC=2.BC.AH\Rightarrow AH=\frac{AB.AC}{BC}=12cm\)
Do BG là tia phân giác của tam giác ABC nên
\(\Rightarrow\frac{AB}{AG}=\frac{BC}{GC}\Rightarrow\frac{15}{AG}=\frac{25}{GC}=\frac{15+25}{AG+GC}=\frac{40}{AC}=\frac{40}{20}=2\Rightarrow AG=\frac{15}{2}=7,5cm\)
c)Xét tam giác CGB và tam giác AKB có:
\(\hept{\begin{cases}\widehat{CBG}=\widehat{ABK}\\\widehat{GCB}=\widehat{KAB}\end{cases}}\)
Suy ra tam giác CGB đồng dạng tam giác AKB(g.g)
\(\Rightarrow\frac{CB}{AB}=\frac{CG}{AK}\Rightarrow AB.CG=CB.AK\left(đpcm\right)\)
Ta có :
\(3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge\frac{2}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Rightarrow\left(a+b+c+d\right)^2=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\)
\(\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\left(đpcm\right)\)
\(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\)\(+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) ( đúng )
=> Đpcm
+) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)
+) Lập phương 2 vế ta được :
\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)
Thay ( 1 ) vào ( 2 ) ta có :
\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Rightarrow4x^3-5x=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
P/s : ko có tgian làm full . Thông cảm nhen ^-^
Gọi cạnh đáy của tam giác là: x(dm,x>10)x(dm,x>10)
Chiều cao của tam giác là: 0,75x(dm)0,75x(dm)
Diện tích ban đầu của tam giác là: 12.0,75x2(dm2)12.0,75x2(dm2)
Chiều cao của tam giác sau khi tăng thêm 3dm là: 0,75x+3(dm)0,75x+3(dm)
Cạnh đáy của tam giác sau khi giảm 2dm là: x−2(dm)
Diện tích của tam giác lúc sau là: 12(0,75x+3)(x−2)12(0,75x+3)(x−2)
Theo bài ra ta có phương trình: 12(0,75x+3)(x−2)=(0,08+1).12.0,75x2
⇔x2−25x+100=0⇔x2−25x+100=0
⇔[x=20(t/m)x=5(kt/m)⇔[x=20(t/m)x=5(kt/m)
Vậy chiều cao và cạnh đáy của tam giác lần lượt là \(15dm\) và 20dm
Hình vẽ ( https://imgur.com/a/SvBFlDL )
Gọi EK cắt DC tại V.
Áp dụng định lý Menelaus cho tam giác AED và cát tuyến FIB ta có:\(\frac{AB}{EB}.\frac{EI}{DI}\cdot\frac{FD}{AF}=1\)
Để ý rằng AEKF,DVKF,ABCD là hình bình hành nên ta dễ dàng có các biến đổi tỉ số như sau:
\(1=\frac{AB}{EB}\cdot\frac{EI}{DI}\cdot\frac{FD}{AF}=\frac{DC}{VC}.\frac{EI}{DI}.\frac{VK}{EK}\) khi đó theo định lý Menelaus đảo cho tam giác EDV và cát tuyến IKC ta có ngay được I,K,C thẳng hàng suy ra điều cần chứng minh
a. \(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x-3\right)\left(x+1\right)\)
b. \(x^2-4xy+3y^2=x^2-xy-3xy+3y^2=x\left(x-y\right)-3y\left(x-y\right)=\left(x-3y\right)\left(x-y\right)\)
c. \(x^2-5x-24=\left(x-8\right)\left(x+3\right)\)
e. \(2x^4+7x^2+3\)
\(=2x^4+x^2+6x^2+3\)
\(=x^2\left(2x^2+1\right)+3\left(2x^2+1\right)\)
\(=\left(x^2+3\right)\left(2x^2+1\right)\)
\(2x\left(x-y\right)-y\left(y-2\right)\)
Thay số:
\(2\left(-\frac{1}{3}\right)\left(\left(-\frac{1}{3}\right)-\left(-\frac{2}{3}\right)\right)-\left(-\frac{2}{3}\right)\left(-\frac{2}{3}-2\right)\)
\(=2\left(-\frac{1}{3}\right)\left(-\frac{1}{3}+\frac{2}{3}\right)+\frac{2}{3}\left(-\frac{2}{3}-2\right)\)
\(=\frac{-2}{3}\cdot\frac{1}{3}+\frac{2}{3}\cdot\left(-\frac{8}{3}\right)\)
\(=\frac{2}{3}\cdot\left(-\frac{1}{3}\right)+\frac{2}{3}\cdot\left(-\frac{8}{3}\right)\)
\(=\frac{2}{3}\cdot\left(\left(-\frac{1}{3}\right)+\left(-\frac{8}{3}\right)\right)\)
\(=\frac{2}{3}\cdot\left(-3\right)\)
\(=-2\)
Vậy: \(2x\left(x-y\right)-y\left(y-2\right)=-2\)tại \(x=-\frac{1}{3}\)và\(y=-\frac{2}{3}\)
Thay \(x=\frac{-1}{3};y=\frac{-2}{3}\)vào biểu thức \(2x\left(x-y\right)-y\left(y-2\right)\)ta có :
\(2.\frac{-1}{3}.\left(\frac{-1}{3}-\frac{-2}{3}\right)-\frac{-2}{3}.\left(\frac{-2}{3}-2\right)\)
\(=\frac{-2}{3}.\frac{1}{3}-\frac{-2}{3}.\frac{-8}{3}\)
\(=\frac{-2}{3}.\left(\frac{1}{3}-\frac{-8}{3}\right)\)
\(=\frac{-2}{3}.3\)
\(=-2\)