cho hình vuông 3*3 ( 3 dọc 3 ngang ) và các số tự nhiên từ 1 đến 9. Hãy điền các số đã cho lần lượt vào hình vuông sao cho tổng các số trong bất kì hình vuông 2*2 bằng nhau và bằng T. Hãy tìm giá trị lớn nhất T có thể nhận.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NR
0
19 tháng 12 2019
a) Khi m = -5 ta được phương trình x2 + 4x - 5 = 0
Ta có a + b + c = 1 + 4 + (-5) = 0 nên phương trình có hai nghiệm phân biệt là x1 = 1; x2= c/a = (-5)/1 = -5
Tập nghiệm của phương trình S = {1; -5}
b) Δ' = 22 - m = 4 - m
Phương trình có nghiệm kép ⇔ Δ'= 0 ⇔ 4 - m = 0 ⇔ m = 4
c) Để phương trình (1) có hai nghiệm x1 và x2 ⇔ Δ' ≥ 0 ⇔ 4 - m ≥ 0 ⇔ m ≤ 4
Theo Vi-et ta có:
Ta có: x12 + x22 = 10 ⇔ (x1 + x2)2 - 2x1x2 = 10
⇔ (-4)2 - 2m = 10 ⇔ 16 - 2m = 10 ⇔ m = 3 (TM)
LC
0
19 tháng 12 2019
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\)
\(\ge\frac{4}{a^2+2ab+b^2}=\frac{4}{\left(a+b\right)^2}\)