Tìm giá trị nhỏ nhât của A=x^2 +y^2 / y, biết x-y=1, y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Ta có: \(x^2-2x+3< -2x+3\)
\(\Rightarrow x^2< 0\)
=> vô lý
=> vô nghiệm
b) \(x^2+2x+2\le0\)
\(\Leftrightarrow\left(x+1\right)^2+1\le0\)
\(\Rightarrow\left(x+1\right)^2\le-1\)
=> vô lý
=> vô nghiệm
Bài làm:
a) Ta có: \(x^2+1< 1\)
\(\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\left(\forall x\right)\)
=> vô lý
=> BPT vô nghiệm
b) \(x^2+2x< 2x\)
\(\Rightarrow x^2< 0\)
tương tự a BPT vô nghiệm
Kéo dài DA,cắt BC tại E
Ta có:Xét tam giác DBE và tam giác DBC có:
\(\hept{\begin{cases}\widehat{DBE}=\widehat{DBC}=\left(=90^0\right)\\DBchung\\\widehat{BDE}=\widehat{BDC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta DBE=\Delta DBC\left(g.c.g\right)\)
\(\Rightarrow\widehat{DEB}=\widehat{DCB}\left(1\right)\)
Ta lại có:Vì tứ giác ABCD là hình thang cân có AB song song với CD nên
\(\Rightarrow\widehat{ADC}=\widehat{BCD}\left(2\right)\)
Từ (1) và (2)
Suy ra tam giác DEC là tam giác đều
\(\Rightarrow\widehat{ADC}=\widehat{BCD}=60^0\)
\(\Rightarrow\widehat{DAB}=\widehat{CBA}=\frac{360^0-60^0.2}{2}=120^0\)
Vậy............
1) \(=\left(2z+3\right)\left(4z^2-6z+9\right)\)
2) \(=\left(\frac{3x^2}{5}-\frac{1}{2}\right)\left(\frac{3x^2}{5}+\frac{1}{2}\right)\)
3) \(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
4) \(=\left(2x+1\right)^2\)
5) \(=\left(x-10\right)^2\)
6) \(=\left(y^2-7\right)^2\)
7) \(=\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)\)
Ta đặt: \(3^n+19=a^2\) (Với a thuộc N)
TH1: Nếu n lẻ thì ta cho \(n=2m+1\)=> \(3^n+19=3^{2m+1}+19=9^m.3+19\)
Có \(9^m\)chia 4 dư 1 => \(9^m.3\)chia 4 dư 3 => \(9^m.3+19\): 4 dư 2
=> \(a^2\)chia 4 dư 2. Nma đây là 1 điều cực vô lí do 1 SCP chỉ : 4 dư 0 hoặc 1
=> n phải chẵn => \(n=2k\)
=> \(9^k+19=a^2\)
<=> \(\left(a-3^k\right)\left(a+3^k\right)=19\)
=> \(a-3^k;a+3^k\)đều là Ư(19). Do \(a-3^k;a+3^k\)là 2 số cùng dấu và \(a+3^k>0\)
=> \(a-3^k>0\) . Và ta còn thấy do a; k thuộc N nên \(a-3^k< a+3^k\)
=> Ta chỉ xét duy nhất 1 TH là: \(a-3^k=1;a+3^k=19\)
=> Cộng lại ta đc: \(2a=20\) <=> \(a=10\) <=> \(n=4\)
Vậy n có nghiệm duy nhất là 4 thì \(3^n+19\) là 1 SCP.
Đặt \(A=3^n+19\)
Ta thấy : \(3^n\) lẻ => \(3^n+19\) chẵn . Nên để A là SCP thì A phải chia hết cho 4
Mà 19 : 4 dư 3 => 3n chia 4 dư 1 ( 1 )
+) Nếu n lẻ = 2a + 1 ( a chẵn ) thì \(3^{2a+1}=3.3^{2a}=3.\left(3^2\right)^a=3.9^a=3.\left(8+1\right)^a\) chia 4 dư 3 trái với khẳng định ( 1 )
Vậy phải chẵn và có dạng 2k
Ta có : \(A=3^{2k}+19\)
+) Nếu k = 0 => A = 20 không phải là SCP ( loại )
+) Nếu k = 1 => A = 28 không phải là SCP ( loại )
+) Nếu k = 2 => A = 100 là SCP ( chọn )
+) Nếu k lớn hơn hoặc bằng 3 thì \(\left(3^k\right)^2< A=\left(3^k\right)^2+19< \left(3^k\right)^2+6k+1=\left(3^k+1\right)^2\)
Vì A nằm giữa 2 SCP liên tiếp 3k và 3k + 1 nên A không thể là SCP => Loại
Vậy với duy nhất n = 2k = 4 thì 3n + 19 là số chính phương
(x-1)*(x-7)*(x-3)*(x-5) -20
=(x^2-8x+7)(x^2-8x+15) -20 (1)
Đặt x^2-8x+7 là t khi đó (1) trở thành
= t*(t+8) -20
=t^2-8t -20
=t^2 - 2t +10t -20
=t*(t-2) + 10*(t-2)
=(t-2)*(t+10)
Thay t = x^2-8x+7
=(x^2-8x+5)*(x^2-8x+15)
=(x^2-8x+5)*(x^2-3x-5x+15)
=(x^2-8x+5)*[x*(x-3) -5*(x-3)]
=(x^2-8x+5)*(x-3)*(x-5)
( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20
= [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20
= ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20
Đặt x2 - 8x + 7 = t
= t( t + 8 ) - 20
= t2 + 8t - 20
= t2 - 2t + 10t - 20
= t( t - 2 ) + 10( t - 2 )
= ( t + 10 )( t - 2 )
= ( x2 - 8x + 7 + 10 )( x2 - 8x + 7 - 2 )
= ( x2 - 8x + 17 )( x2 - 8x + 5 )
Ta có :
\(a_1^3-a_1=\left(a_1-1\right)\left(a_1^2+ab+1\right)\)\()\)\(=\left(a_1-1\right)\left(a_1+ab+1\right)\)\(=\left(a_1-1\right)a_1\left(a_1+1\right)\)
Vì \(\left(a_1-1\right),a_1,\left(a_1+1\right)\)là 3 số nguyên liên tiếp
\(\Rightarrow a_1^3-a_1⋮6\left(đpcm\right)\)
Bạn kia làm sai rồi nhé !
\(a_1^3-a_1=a_1\left(a_1^2-1\right)=\left(a_1-1\right)a\left(a_1+1\right)⋮6\)
Ta có: a^2 + b^2 = c^2 + d^2 => a^2 − c^2 = d^2 − b^2
=>a2−c2=d2−b2
=> (a−c)(a+c)=(d−b)(d+b)(1)
Lại có: a + b = c + d
=> a − c = d − b
+) Nếu a=b=c=d
=>a^2020 + b^2020 = c^2020+d^2020
+) Nếu a ≠ b ≠ c≠d
Khi đó (1) trở thành: a + c = b + d (2)
Mà a+b=c+d (3)
Cộng theo vế của (2) và (3)
2 a + b + c = b + c + 2 d
=>2 a = 2 d ⇒ a = d = b = c ⇒2a=2b=2c=2d⇒a^2020 + b^2020 = c^2020+d^2020
Vậy ta luôn có a^2020 + b^2020 = c^2020+d^2020 với điều kiện của đề.
Học tốt !
Ta có a + b = c + d
=> (a + b)2 = (c + d)2
=> a2 + b2 + 2ab = c2 + d2 + 2cd
=> 2ab = 2cd
=> ab = cd
Khi đó a + b = c + d
=> (a + b)2020 = (c + d)2020
=> a2020 + b2020 + 2020a.b2019 + 2020a2019.b = c2 + d2 + 2020cd2019 + 2020c2019d
=> 2020ab(a2018 + b2018) + a2020 + b2020 = c2020 + d2020 + 2020cd(d2018 + c2018)
a)\(\left(x^4+8x^2+16\right):\left(x^2+4\right)\)
\(=\left(x^2+4\right)^2:\left(x^2+4\right)\)
\(=x^2+4\)
b)\(\left(25-x^2\right):\left(x+5\right)\)
=\(\left(x^2-5^2\right):\left(x+5\right)\)
\(=\left(x-5\right)\left(x+5\right):\left(x+5\right)\)
\(=x-5\)
c)\(\left(x^3+1\right):\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right):\left(x^2-x+1\right)\)
\(=x+1\)
a) \(\left(x^4+8x^2+16\right):\left(x^2+4\right)\)\(=\left(x^2+4\right)^2:\left(x^2+4\right)\)\(=x^2+4\)
b) \(\left(25-x^2\right):\left(x+5\right)=\left(x-5\right).\left(x+5\right):\left(x+5\right)\)\(=x-5\)
c) \(=\left(x^3+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\)\(=x+1\)
Học tốt