Cho tam giác ABC có góc BAC = 60o. Tia phân giác của góc ABC cắt AC tại E, tia phân giác của góc ACB cắt AB tại F. BE cắt CF tại I. Chứng minh IE = IF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nữa chu vi là:
\(120:2=60\left(m\right)\)
Chiều dài là:
\(\left(60+6\right):2=33\left(m\right)\)
Chiều rộng là:
\(60-33=27\left(m\right)\)
Diện tích mảnh đất là:
\(33\times27=891\left(m^2\right)\)
ĐS: ...
Diện tích xung quanh căn phòng là:
\(\left(6+3,6\right)\cdot2\cdot3,8=72,96\left(m^2\right)\)
Diện tích cần quét vôi là:
\(72,96+6\cdot3,6-8=86,56\left(m^2\right)\)
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Số giao điểm tạo được tối đa là:
\(5\cdot\dfrac{4}{2}=10\left(giaođiểm\right)\)
a/Do \(x^2\ge0\) nên \(M=x^2+10\ge0+10=10\)
Dấu "=" xảy ra khi \(x^2=0\)
\(\Rightarrow x=0\)
Vậy \(minM=10\) khi \(x=0\)
b/Do \(\left\{{}\begin{matrix}\left(x-9\right)^{20}\ge0\\\left(y-10\right)^{10}\ge0\end{matrix}\right.\) nên \(H=\left(x-9\right)^{20}+\left(y-10\right)^{10}+11\ge0+0+11=11\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-9\right)^{20}=0\\\left(y-10\right)^{10}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=9\\y=10\end{matrix}\right.\)
Vậy \(minH=11\) khi \(\left\{{}\begin{matrix}x=9\\y=10\end{matrix}\right.\)
a: \(x^2>=0\forall x\)
=>\(M=x^2+10>=10\forall x\)
Dấu '=' xảy ra khi x=0
b: \(\left(x-9\right)^{20}>=0\forall x\)
\(\left(y-10\right)^{10}>=0\forall y\)
Do đó: \(\left(x-9\right)^{20}+\left(y-10\right)^{10}>=0\forall x,y\)
=>\(H=\left(x-9\right)^{20}+\left(y-10\right)^{10}+11>=11\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-9=0\\y-10=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=9\\y=10\end{matrix}\right.\)
-123<=x<=123
mà x nguyên
nên \(x\in\left\{-123;-122;...;122;123\right\}\)
Tổng các số nguyên x thỏa mãn -123<=x<=123 là:
\(\left(-123\right)+\left(-122\right)+...+122+123\)
\(=\left(-123+123\right)+\left(-122+122\right)+...+\left(-1+1\right)+0\)
=0+0+...+0
=0
Tích của các số nguyên x thỏa mãn -123<=x<=123 là:
\(\left(-123\right)\cdot\left(-122\right)\cdot...\cdot122\cdot123\)
\(=0\cdot\left(-123\right)\cdot\left(-122\right)\cdot...\cdot122\cdot123\)
=0
\(x:5=y:4\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
\(y:2=z:3\Rightarrow\dfrac{y}{4}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x+y+z}{5+4+6}=\dfrac{90}{15}=6\)
\(\Rightarrow\dfrac{x}{5}=6\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{4}=6\Rightarrow y=24\)
\(\Rightarrow\dfrac{z}{6}=6\Rightarrow z=36\)
Kẻ IH là phân giác của góc BIC
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
=>\(\widehat{IBC}+\widehat{ICB}=60^0\)
Xét ΔIBC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=>\(\widehat{BIC}+60^0=180^0\)
=>\(\widehat{BIC}=120^0\)
Ta có: \(\widehat{BIC}+\widehat{BIF}=180^0\)(hai góc kề bù)
=>\(\widehat{BIF}+120^0=180^0\)
=>\(\widehat{BIF}=60^0\)
Ta có: \(\widehat{BIF}=\widehat{EIC}\)(hai góc đối đỉnh)
mà \(\widehat{BIF}=60^0\)
nên \(\widehat{EIC}=60^0\)
IH là phân giác của góc BIC
=>\(\widehat{BIH}=\widehat{CIH}=\dfrac{\widehat{BIC}}{2}=60^0\)
Xét ΔFBI và ΔHBI có
\(\widehat{FBI}=\widehat{HBI}\)
BI chung
\(\widehat{FIB}=\widehat{HIB}\left(=60^0\right)\)
Do đó: ΔFBI=ΔHBI
=>IF=IH
Xét ΔIHC và ΔIEC có
\(\widehat{HIC}=\widehat{EIC}\)
IC chung
\(\widehat{HCI}=\widehat{ECI}\)
Do đó: ΔIHC=ΔIEC
=>IH=IE
mà IH=IF
nên IE=IF