Bài 1 tìm x
a) (2x-3)^2 - (2x+5)^2 = 10
b) 4(x+1)^2+(2x-1)^2+8(x+1)(x-1)= 11
c) (x+5)^2 = 45+x^2
d) (2x-3)^2-(2x-1)^2= -3
e) (x-1)^2-(5x-3)^2= 0
Ai xong trước mình tick luôn nha đang cần gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình Tự Vẽ
Xét \(\Delta AEC\)và \(\Delta ADB\)có :\(\widehat{A}\)chung :\(\widehat{E}\)=\(\widehat{D}\)\(\Rightarrow\)\(\Delta AEC\)\(\approx\)\(\Delta ADB\)\(\Rightarrow\)\(\widehat{ABD}\)=\(\widehat{ACE}\)
Xét \(\Delta HDC\)và \(\Delta HEB\)có : \(\widehat{D}\)=\(\widehat{C}\); \(\widehat{HCD}\)=\(\widehat{HBE}\)\(\Rightarrow\)\(\Delta HDC\)\(\approx\)\(\Delta HEB\)\(\Rightarrow\)\(\frac{HB}{HC}\)= \(\frac{HE}{HD}\)\(\Rightarrow\)HB.HD=HC.HE
a) Xét tam giác ADB và tam giác AEC có:
Chung DAB; 2 góc vuông ADB=AEC=90 độ (có 2 đường cao BD, CE lần lượt hạ từ B; C xuống)
=> Đồng dạng theo TH gg
b; c) Có: BEC=BDC=90 độ
=> Tứ giác BCDE nội tiếp
=> góc HDE= góc ECB (tính chất)
=> tam giác HDE đồng dạng tam giác HCB (gg)
=> \(\frac{HD}{HE}=\frac{HC}{HB}\)
=> \(HD.HB=HC.HE\)(ĐPCM)
d) Xét tứ giác ADHE có: góc ADH=góc AEH=90 độ
=> góc ADH + góc AEH=90+90=180 độ
=> Tứ giác ADHE nội tiếp
=> góc AHD=góc AED (tính chất) (*)
Có tứ giác BCDE nội tiếp (cmt) => góc AED=góc ACB (tính chất) (**)
Từ (*) và (**) => góc ACB=góc AHD.
=> Tam giác DHA đồng dạng tam giác DCB (gg) khi có \(\hept{\begin{cases}ACB=AHD\left(cmt\right)\\ADH=BCD=90\end{cases}}\)
=> \(\frac{DH}{DA}=\frac{DC}{DB}\)
=> \(DH.DB=DA.DC\)(ĐPCM)
e) Đề bài sai nhé (CM đồng dạng chứ ko phải là CM bằng nhau)
Có: góc AED=góc ACB (cmt)
Và có chung góc DAE
=> Tam giác ADE đồng dạng tam giác ACB (gg)
=> ĐPCM
Hình Tự kẻ
Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE
Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E
Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC , suy ra MA.MC=MD.ME
Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC
A B C M D E
a, Xét tam giác ABC và tam giác DBE có :
góc B chung
góc BAC = góc BDE (=90độ )
Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )
b, Xét tam giác MAE và tam giác MDC có :
góc MAE = góc MDC ( = 90độ )
góc AME = góc DMC ( đối đỉnh )
Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )
\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)
\(\Rightarrow MA.MC=MD.ME\)
c,d : Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .
Học tốt
\(A=\frac{a}{a-1}-\frac{a}{a+1}+a^2-1\left(đk:a\ne\pm1\right)\)
\(=\frac{a\left(a+1\right)}{a^2-1}-\frac{a\left(a-1\right)}{a^2-1}+a^2-1\)
\(=\frac{a^2+a-a^2+a}{a^2-1}+a^2-1\)
\(=\frac{2a}{a^2-1}+a^2-1\)
Bài làm:
a) đkxđ: \(\hept{\begin{cases}a-1\ne0\\a+1\ne0\\a^2-1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}a\ne1\\a\ne-1\end{cases}}\)
b) Sửa đề:
\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{a^2-1}\)
\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{a\left(a+1\right)-a\left(a-1\right)+2}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{a^2+a-a^2+a+2}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{2a+2}{\left(a-1\right)\left(a+1\right)}=\frac{2\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
\(A=\frac{2}{a-1}\)
=> đpcm
c) \(A\inℤ\Rightarrow\frac{2}{a-1}\inℤ\Rightarrow\left(a-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow a\in\left\{-1;0;2;3\right\}\)
Mà \(a\ne-1\left(đkxd\right)\Rightarrow a\in\left\{0;2;3\right\}\)
d) Ta có: \(A\ge1\)
\(\Leftrightarrow\frac{2}{a-1}-1\ge0\)
\(\Leftrightarrow\frac{3-a}{a-1}\ge0\)
+ Nếu: \(\hept{\begin{cases}3-a\ge0\\a-1>0\end{cases}}\Rightarrow\hept{\begin{cases}3\ge a\\a>1\end{cases}}\Rightarrow1< a\le3\)
+ Nếu: \(\hept{\begin{cases}3-a\le0\\a-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}a\ge3\\a< 1\end{cases}}\) (vô lý)
Vậy khi \(1< a\le3\) thì \(A\ge1\)
\(\left(x-2\right)^2-\left(-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)-\left(-x+1\right)=0\)
\(\Leftrightarrow x^2-2x-2x+4+x-1=0\)
\(\Leftrightarrow x^2-3x+3=0\)( vô nghiệm )
\(\left(x-2\right)^2-\left(-x+1\right)=0\)
\(< =>\left(x-2\right)^2-\left(1-x\right)=0\)
\(< =>x^2-4x+4-1+x=0\)
\(< =>x^2-3x-3=0\)(vô nghiệm)
a) 4x2 - 4x + 5
= 4x2 - 4x + 1 + 4
= ( 2x - 1 )2 + 4
\(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+4\ge4>0\forall x\)( trái với đề bài )
=> BPT vô nghiệm ( đpcm )
b) x2 + x + 1
= x2 + 1/2x + 1/4 + 3/4
= ( x + 1/2 )2 + 3/4
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( trái với đề bài )
=> BPT vô nghiệm ( đpcm )
Bài làm:
a) Ta có: \(4x^2-4x+5=\left(4x^2-4x+1\right)+4=\left(2x-1\right)^2+4\ge4>0\left(\forall x\right)\)
Kết hợp với đề bài => vô lý
=> BPT vô nghiệm
b) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Kết hợp với đề bài => vô lý
=> BPT vô nghiệm
Bài làm:
Sửa đề:
Ta có: \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+y\right)\)
\(B=2x\left(y-z\right)-\left(y-z\right)\left(x+y\right)\)
\(B=\left(y-z\right)\left(2x-x-y\right)\)
\(B=\left(x-y\right)\left(y-z\right)\)
Với x=18 ; y=24 ; z=10 ta được:
\(B=\left(18-24\right)\left(24-10\right)\)
\(B=\left(-6\right).14=-84\)
có : Tam giác ABC đều
Góc ABC = (180 - BAC) / 2 (1)
Xét tam giác AEH và tam giác AFH có :
EAH = FAH ( vì AH là tia phân giác của BAC )
AEH = AFH (cùng bằng 90 đọ )
AH ( cạnh chung )
Tam giác AEH = Tam Giác AFH (g-c-g)
AE=AF suy ra Tam giác AEF cân tại A suy ra AEF = ( 180 - EAF) / 2 (2) Từ (1) và (2) suy ra AEF=ABC suy ra EF song song BC
giúp mình vs ạ
a) \(\left(2x-3\right)^2-\left(2x+5\right)^2=10\)
\(\Leftrightarrow4x^2-12x+9-4x^2-20x-25-10=0\)
\(\Leftrightarrow-32x-26=0\)
\(\Leftrightarrow-32x=26\)
\(\Rightarrow x=-\frac{13}{16}\)
b) \(4\left(x+1\right)^2+\left(2x-1\right)^2+8\left(x-1\right)\left(x+1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1+8x^2-8=0\)
\(\Leftrightarrow16x^2+4x-3=0\)
\(\Leftrightarrow4\left(4x^2+x+\frac{1}{16}\right)-\frac{13}{4}=0\)
\(\Leftrightarrow\left[2\left(2x+\frac{1}{4}\right)\right]^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)
\(\Leftrightarrow\left(4x+\frac{1}{2}-\frac{\sqrt{13}}{2}\right)\left(4x+\frac{1}{2}+\frac{\sqrt{13}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+\frac{1-\sqrt{13}}{2}=0\\4x+\frac{1+\sqrt{13}}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{8}\\x=\frac{-1-\sqrt{13}}{8}\end{cases}}\)
c) \(\left(x+5\right)^2=45+x^2\)
\(\Leftrightarrow x^2+10x+25-x^2-45=0\)
\(\Leftrightarrow10x-20=0\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
d) \(\left(2x-3\right)^2-\left(2x-1\right)^2=-3\)
\(\Leftrightarrow4x^2-12x+9-4x^2+4x-1+3=0\)
\(\Leftrightarrow-8x+11=0\)
\(\Leftrightarrow-8x=-11\)
\(\Rightarrow x=\frac{11}{8}\)
e) \(\left(x-1\right)^2-\left(5x-3\right)^2=0\)
\(\Leftrightarrow\left(x-1-5x+3\right)\left(x-1+5x-3\right)=0\)
\(\Leftrightarrow\left(-4x+2\right)\left(6x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+2=0\\6x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{2}{3}\end{cases}}\)