K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(BM=MC=\dfrac{BC}{2}\)

\(CN=ND=\dfrac{CD}{2}\)

mà BC=CD

nên BM=MC=CN=ND

Xét ΔABM vuông tại B và ΔBCN vuông tại C có

AB=BC

BM=CN

Do đó: ΔABM=ΔBCN

=>AM=BN

ΔABM=ΔBCN

=>\(\widehat{BMA}=\widehat{CNB}\)

=>\(\widehat{AMB}+\widehat{CBN}=90^0\)

=>AM\(\perp\)BN tại E

 

8 tháng 8 2024

chịu

2x(1-x)-(2x-1)(x+1)

\(=2x-2x^2-\left(2x^2+2x-x-1\right)\)

\(=-2x^2+2x-2x^2-x+1\)

\(=-4x^2+x+1\)

8 tháng 8 2024


Em cần làm gì với biểu thức này thì nên ghi rõ yêu cầu ra em nhé!

NV
8 tháng 8 2024

\(\Leftrightarrow\left(6x^2+2xy-8x\right)+\left(3xy+y^2-4y\right)+\left(3x+y-4\right)=1\)

\(\Leftrightarrow2x\left(3x+y-4\right)+y\left(3x+y-4\right)+\left(3x+y-4\right)=1\)

\(\Leftrightarrow\left(3x+y-4\right)\left(2x+y+1\right)=1\)

Ta có bảng sau:

3x+y-4-11
2x+y+1-11
x55
y-12-10

Vậy \(\left(x;y\right)=\left(5;-12\right);\left(5;-10\right)\)

NV
8 tháng 8 2024

Do 729 chia hết cho 3 \(\Rightarrow2x^2\) chia hết  cho 3 \(\Rightarrow x\) chia hết cho 3

\(\Rightarrow x=3x_1\)

\(\Rightarrow2\left(3x_1\right)^2+3y^2=729\)

\(\Rightarrow6x_1^2+y^2=243\)

Tương tự, 243 chia hết cho 3 \(\Rightarrow y=3y_1\)

\(\Rightarrow6x_1^2+9y_1^2=243\)

\(\Rightarrow2x_1^2+3y_1^2=81\)

Lý luận tương tự ta có \(\left\{{}\begin{matrix}x_1=3x_2\\y_1=3y_2\end{matrix}\right.\)

\(\Rightarrow2x_2^2+3y_2^2=1\) (1)

(1) ko có nghiệm nguyên nên pt đã cho ko có nghiệm nguyên

NV
8 tháng 8 2024

Đề là \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\) với đúng chứ em?

10 tháng 8 2024

thầy trả lời giúp em với

NV
8 tháng 8 2024

Do E đối xứng A qua D \(\Rightarrow D\) là trung điểm AE

Mà D là trung điểm BC

\(\Rightarrow AE\) và BC cắt nhau tại trung điểm D của mỗi đường

\(\Rightarrow ABEC\) là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

\(\Rightarrow AB=CE\)

NV
8 tháng 8 2024

\(\Leftrightarrow\left(6x^2+2xy-8x\right)+\left(3xy+y^2-4y\right)+\left(3x+y-4\right)=1\)

\(\Leftrightarrow2x\left(3x+y-4\right)+y\left(3x+y-4\right)+\left(3x+y-4\right)=1\)

\(\Leftrightarrow\left(3x+y-4\right)\left(2x+y+1\right)=1\)

Pt ước số đơn giản, em có thể tự lập bảng giá trị

NV
8 tháng 8 2024

Do I là giao điểm của AC và BD \(\Rightarrow\) I là trung điểm BD

\(\Rightarrow IB=ID\)

Xét hai tam giác IMB và IND có: 

\(\left\{{}\begin{matrix}\widehat{IBM}=\widehat{IDN}\left(\text{so le trong}\right)\\IB=ID\\\widehat{MIB}=\widehat{NID}\left(\text{đối đỉnh}\right)\end{matrix}\right.\)  

\(\Rightarrow\Delta IMD=\Delta IND\left(g.c.g\right)\Rightarrow IM=IN\)

 

NV
8 tháng 8 2024

loading...

8 tháng 8 2024

\(\left(x-2\right)^2-\left(x+3\right)^2+\left(x+4\right)\left(x-4\right)=0\\ < =>x^2-4x+4-x^2-6x-9+x^2-16=0\\ < =>x^2-10x-21=0\\ < =>\left(x^2-10x+25\right)-46=0\\ < =>\left(x-5\right)^2=46\\ < =>\left[{}\begin{matrix}x-5=\sqrt{46}\\x-5=-\sqrt{46}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\sqrt{46}+5\\x=5-\sqrt{46}\end{matrix}\right.\)

NV
8 tháng 8 2024

a.

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

b.

Từ câu a:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)^2}{2}\)