cho tứ giác ABCD tính các góc của tứ giác trong các trường hợp sau:
a.góc A=150 B=3C C=2D
b.A=2B C+D=210
c.A=2B=3C=4D
dd.A=1/2B B=2C C=D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu như hình thang có 2 cặp cạnh song song luôn thì sao vậy bạn?
d) \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12=\left(a^2+a\right)^2+4\left(a^2+a\right)+16-4\)
\(=\left(a^2+a+2\right)^2-4=\left(a^2+a+2-4\right)\left(a^2+a+2+4\right)\)
\(=\left(a^2+a-2\right)\left(a^2+a+6\right)=\left(a-1\right)\left(a+2\right)\left(a^2+a+6\right)\)
Phương trình đã cho là phương trình đối xứng bậc 4 với dạng tổng quát là:
ax4 + bx3 + cx2 + bx + a = 0 (a ≠ 0)
Vì x = 0, không phải là nghiệm của phương trình, nên chia hai vế của phương trình cho x2 , nên phương trình đưa về dạng:
x2 – 2x – 1 + = 0
<=> x2 + - 2(x + ) - 1 = 0
Đặt y = x + =>x2 + = y2 - 2 . Nên ta được phương trình:
y2 – 2y – 3 = 0 <=> y = -1, y = 3
+) x + = -1 <=> x2 + x + 1 = 0 vô nghiệm
+) x + = 3 <=> x2 - 3x + 1 = 0
<=> x1,2 =
Học Tốt~~
Nếu p = 2
=> p + 4 = 6 (loại)
Nếu p = 3
=> p + 4 = 7 (tm)
=> p + 14 = 17 (tm)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)
Khi p = 3k + 1
=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) \(⋮\)3
=> p + 14 là hợp số (loại)
Khi p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3 (loại)
=> p + 4 là hợp số (loại)
Vậy p = 3
a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)
b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)
\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)
c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)
d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)
e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)
= 31
f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)
\(5x^2+2y^2-4xy+20x-8y\)
\(=\left(4x^2-4xy+y^2\right)+\left(x^2+20x+100\right)+y^2-8y+16-116\)
\(=\left(2x-y\right)^2+\left(x+10\right)^2+\left(y-4\right)^2-116\ge-116\)
GTNN của biểu thức = -116
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x+10=0\\y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-y=0\\x=-10\\y=4\end{cases}}}\)( Vô lí )
=> Không tìm được giá trị nào của x để biểu thức có giá trị nhỏ nhất .
a) Xét tứ giác ABCD ta có ( ^B = 2^C mới được nhé)
^A + ^B + ^C + ^D = 3600
=> 1500 + ^B + ^C + ^D = 3600
=> ^B + ^C + ^D = 2100
Có ^B = 2^C
=> 2 ^C + ^C + ^D = 2100
=> 3^C + ^D = 2100
Có ^C = 2^D
=> 3 . 2^D + ^D = 2100
=> 7^D = 2100
=> ^D = 300
+) ^C = 2^D = 2.300 = 600
+) ^B = 2^C = 2.600 = 1200
b) Xét tứ giác ABCD có :
^A + ^B + (^C + ^D) = 3600
=> 2^B + ^B + 2100 = 3600
=> 3^B = 1500
=> ^B = 500
+) ^A = 2^B = 2.500 = 1000
Có ^C + ^D = 2100 => ^C = ^D = 210 : 2 = 1050
Vậy ^A = 1000,^B = 500,^C = ^D = 1050
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36^0\)
=> ^A = 360 , ^B = 720 , ^C = 1080 , ^D = 1440
d) Tự làm