cho tứ giác ABCD có AC là tia phân giác của góc BAD, M thuộc tia đối của AC sao cho góc MDA= góc BDC. CMR góc MBA= góc CBD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left(\sqrt{5}-\sqrt{6}\right)=\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{6}+\left(\sqrt{6}\right)^2=5-2\sqrt{30}+6\)
2. \(\left(\sqrt{3}-\sqrt{5}\right)^2=\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=3-2\sqrt{15}+5\)
3. \(\left(2\sqrt{2}+\sqrt{3}\right)^2=\left(2\sqrt{2}\right)^2+2\cdot2\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2=8+4\sqrt{6}+3\)
4. \(\left(\sqrt{4}-\sqrt{17}\right)^2=\left(\sqrt{4}\right)^2-2\cdot\sqrt{4}\cdot\sqrt{17}+\left(\sqrt{17}\right)^2=4-4\sqrt{47}+17\)
5. \(\sqrt{\left(\sqrt{5}-3\right)^2}=\left|\sqrt{5}-3\right|=\left|-3+\sqrt{5}\right|=3-\sqrt{5}\)
6. \(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}+\sqrt{7}\right)=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=4\cdot5-7=13\)
7. \(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
8. \(\sqrt{\left(5+2\sqrt{6}\right)^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}=\left|5+2\sqrt{6}\right|-\left|5-2\sqrt{6}\right|=5+2\sqrt{6}-\left(5-2\sqrt{6}\right)=4\sqrt{6}\)9. \(\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}+2\right)^2}=\left|\sqrt{7}-2\right|+\left|\sqrt{7}+2\right|=-2+\sqrt{7}+2+\sqrt{7}=2\sqrt{7}\)
10. \(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}+\sqrt{2}\right|+\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
#em mới lớp 8 nên không chắc lắm ạ :((
Xác định các số a,b,c sao cho 1/(x^2+z)(x-1)= (ax+b)/(x^2+1) +c/(x-1)
Giúp tớ nhanh với ạ, tớ cần gấp
Mình xin phép sửa đề 1 trust ạ :>
Xác định các số a,b,c sao cho \(\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Điều kiện x khác 1 :vv
\(pt\Leftrightarrow\frac{1}{\left(x^2+1\right)\left(x-1\right)}=\frac{\left(ax+b\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}+\frac{c\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)
\(\Leftrightarrow1=ax^2-ax+bx-b+cx^2+c\)
\(\Leftrightarrow\left(a+c\right)x^2+\left(b-a\right)x+\left(c-b-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+c=0\\b-a=0\\c-b-1=0\end{cases}\Leftrightarrow}a=-\frac{1}{2};b=-\frac{1}{2};c=\frac{1}{2}\)
Vậy .....
a) Xét tam giác GBC có:
I là trung điểm GB, K là trung điểm GC => IK là đường trung bình tam giác GBC(đpcm)
b) Xét tam giác ABC có:
BD là trung tuyến => D là trung điểm AC
CE là trung tuyến =>E là trung điểm AB
==>> ED là đường trung bình tam giác ABC => ED= 1/2 BC (1) và ED//BC(2)
Ta có: IK là đường trung bình tam giác GBC => IK= 1/2 BC (3) và IK//BC (4)
Từ (1) và (3) => ED=IK (đpcm)
Từ (2) và (4) => ED//IK (đpcm)
K cho mk nha!!!!!
1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)
\(=3xya^2+3xyb^2+abx^2+ab9y^2\)
\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)
\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)
\(=\left(3ya+xb\right)\left(3yb+ax\right)\)
2.Check lại đề hộ mình nha:((
Câu 2 nên sủa lại đề nha
2. xy(a2+2b2)+ab(2x2+y2)
=xya2+xy2b2+ab2x2+aby2
=(xya2+aby2)+(xy2b2+ab2x2)
=ay(ax+by)+2bx(by+ax)
=(ax+by(ay+2bx)
a. | x + 1 | = 3
<=> x + 1 = 3 hoặc x + 1 = - 3
<=> x = 2 hoặc x = - 4
b. | x | = 1 - x
<=> x = 1 - x hoặc x = - 1 + x ( loại )
<=> x = 1/2
c. | 1 - x | = x
<=> 1 - x = x hoặc 1 - x = - x ( loại )
<=> x = 1/2
d. | 2x - 3 | = 2x - 3
<=> 2x - 3 = 2x - 3 hoặc 2x - 3 = - 2x + 3
<=> với mọi x > 0 hoặc 2x - 3 = - 2x + 3
<=> với mọi x > 0 hoặc x = 0
e. | 3x + 1 | = - 3x - 1
<=> 3x + 1 = - 3x - 1 hoặc 3x + 1 = 3x + 1
<=> x = 1/3 hoặc với mọi x < 0
g. | 5 - 2x | = 2x - 5
<=> 5 - 2x = 2x - 5 hoặc 5 - 2x = - 2x + 5
<=> x = 5/2 hoặc với mọi x < 0
a) 9x2 + 25 - 12xy + 5y2 - 10y
= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )
= ( 3x - 2y )2 + ( y - 5 )2
b) 13x2 + 4x + 12xy + 4y2 + 1
= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )
= ( 3x + 2y )2 + ( 2x + 1 )2
c) x2 + 20 + 9y2 + 8x - 12y
= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )
= ( x + 4 )2 + ( 3y - 2 )2
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)