Tìm số nguyên dương x,y thỏa mãn \(x^2+y^2-13\left(x-y\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^3+3x=y^3+3y\)
\(\Leftrightarrow\left(x^3-y^2\right)+3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3\right)=0\)
\(x^2+xy+y^2+3=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+3>0\)
\(\Leftrightarrow x-y=0\)
\(\Leftrightarrow x=y\)
\(\left(2\right)\Leftrightarrow2x^2=20\)
\(\Leftrightarrow x^2=10\)
\(\Leftrightarrow x=y=\pm\sqrt{10}\)
Vậy ............
\(Đkxđ:\hept{\begin{cases}2x-1>0\\4x-3>0\\x>0\end{cases}\Leftrightarrow x>\frac{3}{4}}\)
Phương trình tương đương với:
\(\left(\frac{x}{\sqrt{2x-1}}-1\right)+\left(\frac{x}{\sqrt[4]{4x-3}}-1\right)=0\)
\(\Leftrightarrow\frac{x-\sqrt{2x-1}}{\sqrt{2x-1}}+\frac{2-\sqrt[4]{4x-3}}{\sqrt[4]{4x-3}}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^2-\sqrt{4x-3}}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{x^4-4x+3}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x-1\right)^2\left(x^2+2x+3\right)}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{1}{\sqrt{2x-1}\left(x+\sqrt{2x-1}\right)}+\frac{\left(x+1\right)^2+2}{\sqrt[4]{4x-3}\left(x+\sqrt[4]{4x-3}\right)\left(x^2+\sqrt{4x-3}\right)}\right]=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy .............................
pt <=> 4x^2=52x+4y^2+52y=0
<=> (2x-13)^2+(2y+13)^2=2.13^2
Đến đây bạn chặn nó là SCP <=2.13^2 là xong