Viết các biểu thức dưới dạng lập phương của tổng hoặc hiệu:
x^3/8+3/4x^2y^2+3/2xy^4+y^6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x\left(x+y\right)-x\left(y-x\right)=x^2+xy-xy+x^2=2x^2\)
Thay x vào ta có : \(2\left(-3\right)^2=2.9=18\)
y bị lược bỏ rồi mà bạn hay chỗ x^2 + xy - xy + x^2 thay vào à ? lạ !?!
b, \(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)=8x^2+4xy+4xy+2y^2-y^2-2xy\)
\(=8x^2+6xy+y^2\)
Thay x = 1/2 ; y = -3/4 ta có : Tự thay nhé -> P/s
a)
\(A=x.\left(x+y\right)-x.\left(y-x\right)\)
\(A=x^2+x.y-x.y+x^2\)
\(A=2.x^2\)
Thay x= -3 vào biểu thức A ta được ;
\(A=2.\left(-3\right)^2=2.9=18\)
b) \(B=4.x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)
\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(2x+y\right)\)
\(B=\left(2x+y\right).\left(4x+2y-y\right)\)
\(B=\left(2x+y\right).\left(4x+y\right)\)
\(B=8x^2+2xy+4xy+y^2\)
\(B=8x^2+6xy+y^2\)
Thay \(x=\frac{1}{2}\) và \(y=\frac{-3}{4}\) vào biểu thức B ta được :
\(B=8.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}.\left(\frac{-3}{4}\right)+\left(\frac{-3}{4}\right)^2\)
\(B=2+\left(\frac{-9}{4}\right)+\frac{9}{16}=\frac{5}{16}\)
Bài 2 :
\(A=4\left(x-6\right)-5x\left(x+1\right)+8\left(x^2-x-2\right)\)
\(A=4x-24-5x^2-5x+8x^2-8x-16\)
\(A=-9x-40+3x^2\)
Thay x=-1 vào biểu thức A ta được :
\(A=-9.\left(-1\right)-40+3.\left(-1\right)^2\)
\(A=9-40+3=-28\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt ^^
\(\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=0\)
<=>\(\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}=0\)
<=>\(\frac{y^2}{xy\left(2x-y\right)}-\frac{4x^2}{xy\left(2x-y\right)}=0\)
=>y2-(2x)2=0
<=>(y-2x)(y+2x)=0
<=>y-2x=0 hoặc y+2x=0
M chỉ làm đc đến đó thôi!!!!!
Giải BPT?
Ta có: \(x^2-4x+1< 0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-3< 0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{3}\right)^2< 0\)
\(\Leftrightarrow\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)< 0\)
Nhận thấy \(x-2-\sqrt{3}< x-2+\sqrt{3}\)
=> \(\hept{\begin{cases}x-2-\sqrt{3}< 0\\x-2+\sqrt{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2+\sqrt{3}\\x>2-\sqrt{3}\end{cases}}\)
Vậy \(2-\sqrt{3}< x< 2+\sqrt{3}\)
Mình làm tắt thôi nhé
\(A=\frac{x^4-2x^2+1}{x^4+x^3+x+1}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x^2-x+1\right)}=\frac{\left(x-1\right)^2}{x^2-x+1}\left(x\ne-1\right)\)
Dễ thấy \(A\ge0\)
\(A=\frac{x^4-2x^2+1}{x^4+x^3+x+1}=\frac{x^4-2x^3+x^2+2x^3-4x^2+2x+x^2-2x+1}{x^4-x^3+x^2+2x^2-2x^2+2x+x^2-x+1}\)
\(=\frac{x^2\left(x^2-2x+1\right)+2x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)}{x^2\left(x^2-x+1\right)+2x\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x^2-2x+1\right)}{\left(x^2+2x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2-2x+1}{x^2-x+1}\)
\(=\frac{\left(x-1\right)^2}{x^2-x+1}\)
Ta có : \(\frac{\left(x-1\right)^2}{x^2-x+1}=\frac{\left(x-1\right)^2}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\)
=> Đpcm
a, (x2 - 3)(2 + 4x)
= 2x2 + 4x3 - 6 - 12x
b, 6(3x + 5)(x - 4)
= (18x + 30)(x - 4)
= 18x2 - 72 + 30x - 120
= 18x2 + 30x - 192
\(x^4+2x^3+3x^2+2x=y^2-y\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)
\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)
Đến đây chắc khó.
a) \(\left(a-b\right)^2=3\)\(\Rightarrow a^2-2ab+b^2=3\)
mà \(a^2+b^2=8\)\(\Rightarrow8-2ab=3\)
\(\Rightarrow2ab=5\)\(\Rightarrow ab=\frac{5}{2}\)
Vậy \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
mà \(a-b=2\)và \(a+b=4\)
\(\Rightarrow a^2-b^2=2.4=8\)
Vậy \(a^2-b^2=8\)
a) Ta có: \(\hept{\begin{cases}a^2+b^2=8\\\left(a-b\right)^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a^2-2ab+b^2=3\end{cases}}\)
=> \(a^2+b^2-\left(a^2-2ab+b^2\right)=8-3\)
<=> \(2ab=5\)
=> \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=2.4=8\)
lm lộn đề nên hơi chậm xíu^^
1) \(2x^4+5x^2+2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+1=0\\x^2+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-\frac{1}{2}\\x^2=-2\end{cases}}\) (vô lý)
=> pt vô nghiệm
2) \(2x^4-7x^2-4=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\2x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-\frac{1}{2}\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
3) \(x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)
4) \(2x^4-20x^2+18=0\)
\(\Leftrightarrow x^4-10x^2+9=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
1. \(2x^4+5x^2+2=0\)
Vì \(2x^4+5x^2+2\ge2\)
=> Pt trên vô nghiệm
2. \(2x^4-7x^2-4=0\)
\(\Leftrightarrow2x^4+x^2-8x^2-4=0\)
\(\Leftrightarrow x^2\left(2x^2+1\right)-4\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x^2+1=0\left(vo-ly\right)\\x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Bài làm:
Ta có: \(\hept{\begin{cases}\left(a-b\right)^2=2\\\left(a+b\right)^2=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2-2ab+b^2=2\\a^2+2ab+b^2=3\end{cases}}\)
=> \(\left(a^2+2ab+b^2\right)+\left(a^2-2ab+b^2\right)=3+2\)
<=> \(2\left(a^2+b^2\right)=5\)
=> \(a^2+b^2=\frac{5}{2}\)
Thay vào tính được: \(\frac{5}{2}+2ab=3\Leftrightarrow2ab=\frac{1}{2}\Rightarrow ab=\frac{1}{4}\)
Vậy \(a^2+b^2=\frac{5}{2}\) và \(ab=\frac{1}{4}\)
\(\left(a-b\right)^2=2\)\(\Rightarrow a^2-2ab+b^2=2\)(1)
\(\left(a+b\right)^2=3\)\(\Rightarrow a^2+2ab+b^2=3\)(2)
Trừ (2) cho (1) ta được: \(\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=3-2\)
\(\Leftrightarrow4ab=1\)\(\Leftrightarrow ab=\frac{1}{4}\)
\(\Rightarrow a^2+b^2=3-2.\frac{1}{4}=\frac{5}{2}\)
Vậy \(a^2+b^2=\frac{5}{2}\)và \(ab=\frac{1}{4}\)
Bài làm:
Ta có: \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)
\(=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.y^2+3.\frac{x}{2}.\left(y^2\right)^2+\left(y^2\right)^3\)
\(=\left(\frac{x}{2}+y^2\right)^3\)