K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

22 tháng 1 2020

Gọi thời gian chảy của vòi 2 để bể đầy khi chảy 1 mình là : x giờ (x>0)

Nếu hai vòi cùng chảy vào bể thì 1 giờ chảy được : \(\frac{1}{6}\)(bể)

Nếu vòi 1 chảy một mình thì 1 giờ chảy được : \(\frac{1}{10}\)(bể)

Ta có phương trình :

\(\frac{1}{x}+\frac{1}{10}=\frac{1}{6}\)

\(\Leftrightarrow\frac{1}{x}=\frac{1}{15}\)

\(\Leftrightarrow x=15\left(h\right)\)

Vậy nếu vòi thứ 2 chảy một mình thì sau 15 giờ bể đầy.

22 tháng 1 2020

Gọi thời gian đội 1 làm một mình là \(x\left(h\right)\left(x>0\right)\)

\(1h\) đội 1 làm được \(\frac{1}{x}\left(V\right)\)

Gọi thời gian đội 2 làm một mình là \(y\left(h\right)\left(y>0\right)\)

\(1h\) đội 2 làm được \(\frac{1}{y}\left(V\right)\)

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Leftrightarrow y-x=6\)

\(\Rightarrow y=6+x\)

\(\Rightarrow\frac{1}{x}+\frac{1}{6+x}=\frac{1}{4}\)

\(\Leftrightarrow4\left(6+x\right)+4x=x^2+6x\)

\(\Leftrightarrow24+8x=x^2+6x\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\left(l\right)\end{cases}}\)

Vậy đội 1 làm trong \(6h\); đội 2 làm trong \(12h\)

22 tháng 1 2020

\(\sqrt{3}x-\sqrt{2}x=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow x\left(\sqrt{3}-\sqrt{ }2\right)=\sqrt{3}+\sqrt{2}\)

\(\Leftrightarrow x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)

22 tháng 1 2020

đến đó tự làm đc ạ

22 tháng 1 2020

Huhu ai giúp mk vs ạ mình xin hậu tạ và cảm ơn😭

23 tháng 1 2020

A B C D O H E

Tính OA:

\(BH=CH=\frac{BC}{2}=2\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{8^2-2^2}=2\sqrt{15}\)

\(\sin\widehat{ABH}=\frac{AH}{AB}\)

\(OA=R=\frac{AB}{2}\sin\widehat{ABH}=\frac{AB^2}{2AH}=\frac{64}{4\sqrt{15}}=16\sqrt{15}\)

Tính DE:

Vì: \(OC\perp BE\Rightarrow BC=CE=4\Rightarrow\widehat{CBD}=\widehat{BAC}\) 

\(\Rightarrow\Delta BCD=\Delta ABC\) (g.g vì có chung \(\widehat{C}\))

\(\Rightarrow BD=BC=4\)

\(\frac{CD}{BC}=\frac{BC}{AB}=\frac{1}{2}\Rightarrow CD=\frac{BC}{2}=2\Rightarrow AD=AC-CD=6\)

Mặt khác: \(BD.DE=AD.CD\Rightarrow DE=AD.\frac{CD}{BD}=6.\frac{2}{4}=3\)

Tính OD:

Ta có \(\cos\widehat{OAD}=\frac{AH}{AC}=\frac{2\sqrt{15}}{8}=\frac{\sqrt{15}}{4}\)

Áp đụng định lí hàm số  cosin vào \(\Delta OAD\)

\(OD^2=OA^2+AD^2-2OA.AD.\cos\widehat{OAD}\)

\(=\frac{16^2}{15}+6^2-2.\frac{16}{\sqrt{15}}.6.\frac{\sqrt{15}}{4}\)

\(=\frac{256}{15}+36-48=\frac{76}{15}\)

\(\Rightarrow OD=2\sqrt{\frac{19}{15}}\)

(Hình ảnh chỉ mang tính chất minh họa và hình hơi xấu thông cảm :D  mới thử làm dạng này nên sai chỗ nào thì bỏ qua nha)

30 tháng 11 2020

A B C O T E H S D

* Hình vẽ nhìn nó không cân lắm nên bạn chỉnh lại ạ

- Gọi AH là đường cao của tam giác ABC , => H là trung điểm của BC

- Áp dụng định lí Py - ta - go cho tam giác AHB vuông tại H , ta có :

\(AH=\sqrt{AB^2-BH^2}=\sqrt{8^2-2^2}=2\sqrt{15}\left(cm\right)\)

\(\Rightarrow S_{ABC}=\frac{AB.AC.BC}{4R}=\frac{AB.AC.BC}{4.OA}\)

\(\Rightarrow OA=\frac{AB.AC.BC}{4.S_{ABC}}=\frac{16\sqrt{15}}{15}\left(cm\right)\)

- Gọi S là giao điểm của BE và OC , T là trung điểm của AC \(\Rightarrow OT\perp AC\)

- Các tứ giác BOSH , OTDS nội tiếp nên :

\(CH.CB=CD.CT\left(=CS.CO\right)=8\Rightarrow CD=\frac{8}{CT}=2\left(cm\right)\)

=> D là trung điểm của CT và AD = 6cm

Vậy : \(BC^2=CD.CA\left(=16cm\right)\)nên \(\Delta ABC~\Delta BCD\left(c-g-c\right)\)nên tam giác BCD cũng cân tại B => BC = BD = 4cm

Ta lại có : \(\Delta DBC~\Delta DAE\left(g-g\right)\Rightarrow BD.DE=CD.AD\Rightarrow DE=\frac{12}{AD}=3\left(cm\right)\)

- Áp dụng định lí Py - ta - go cho tam giác OSE vuông tại S , ta có :

\(OS=\sqrt{OE^2-SE^2}=\frac{17\sqrt{15}}{30}\left(cm\right)\)

- Áp dụng định lí Py - ta - go cho tam giác vuông OSD vuông tại S , ta có :

\(OD=\sqrt{SD^2+OS^2}=\frac{2\sqrt{285}}{15}\left(cm\right)\)

Vậy : DE = 3cm ; \(OA=\frac{16\sqrt{15}}{30}\left(cm\right);OD=\frac{2\sqrt{285}}{15}\left(cm\right)\)

22 tháng 1 2020

ai giỏi số học giúp mik với  , mai mình phải nộp thầy rồi ;(

23 tháng 1 2020

am,fma

16 tháng 7 2020

câu này dễ lắm đấy

22 tháng 1 2020

Đặt BĐT cần c/m là A

Dự đoán đẳng thức xảy ra khi a = b = c

Áp dụng BĐT Cauchy cho 3 số không âm:

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)

\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)

\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)

\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)

\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)

Cộng từng vế của các BĐT trên, ta được:

\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow A\ge\frac{3}{4}\)

(Dấu "="\(\Leftrightarrow a=b=c\))